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Abstract

Phylogenetic trees are used to model evolution: leaves are labelled to represent contemporary species (“taxa”)
and interior vertices represent extinct ancestors. Informally, convex characters are measurements on the contem-
porary species in which the subset of species (both contemporary and extinct) that share a given state, form a
connected subtree. Kelk and Stamoulis (Advances in Applied Mathematics, 84 (2017), pp. 34-46) showed how to
efficiently count, list and sample certain restricted subfamilies of convex characters, and algorithmic applications
were given. We continue this work in a number of directions. First, we show how combining the enumeration of
convex characters with existing parameterised algorithms can be used to speed up exponential-time algorithms for
the maximum agreement forest problem in phylogenetics. Second, we re-visit the quantity g2(T ), defined as the
number of convex characters on T in which each state appears on at least 2 taxa. We use this to give an algorithm
with running time O(ϕn · poly(n)), where ϕ ≈ 1.6181 is the golden ratio and n is the number of taxa in the input
trees, for computation of maximum parsimony distance on two state characters. By further restricting the characters
counted by g2(T ) we open an interesting bridge to the literature on enumeration of matchings. By crossing this
bridge we improve the running time of the aforementioned parsimony distance algorithm to O(1.5895n · poly(n)),
and obtain a number of new results in themselves relevant to enumeration of matchings on at-most binary trees.

Keywords. phylogenetics, matchings, enumeration, combinatorics, exponential-time algorithms, agreement
forests
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1 Introduction

In bioinformatics evolution is often represented by a binary tree T whose leaves are bijectively labelled by a set X of
labels (“taxa”) which represent contemporary species. Interior nodes represent hypothetical ancestors of the species in
X; the tree models the branching process which, via evolutionary phenomena such as mutation and speciation, caused
X to evolve. Such a tree is known as a phylogenetic tree.

There is an extensive mathematical and algorithmic literature on constructing and comparing phylogenetic trees
(see e.g. [25, 4]). Many corresponding optimisation problems are NP-hard. One algorithmic approach to tackling NP-
hard problems is to develop exact exponential-time algorithms [13]: usually, algorithms that run in time O(cn ·poly(n))
where c is a (small) constant and n is the size of the input. The literature on exponential-time algorithms focusses,
logically, on optimising the constant c. The interest is not purely theoretical, since especially in the early phases of
studying an optimisation problem an exponential-time algorithm might be the best practical method available, and
then optimising c can make a crucial difference in practice. Exponential-time algorithms can also be useful for solving
the smaller, reduced instances yielded by pre-processing strategies [14].

In this article we give improved exponential-time algorithms for three optimisation problems occurring in phyloge-
netics. In all three cases we make heavy use of enumeration; in particular, enumeration of so-called convex characters.
For a phylogenetic tree T on X, a convex character is a partition of X such that the minimal spanning trees induced by
the blocks of X are disjoint in T (see e.g. Section 4.1 of [25]). In [20] it was proven that a phylogenetic tree on n taxa
has Θ(ϕ2n) convex characters, and Θ(ϕn) convex characters in which each block of the character contains at least two
taxa, where ϕ ≈ 1.681 is the golden ratio and ϕ2 ≈ 2.6181. These characters can also be efficiently counted and listed,
which formed the basis for a O(ϕ2n ·poly(n)) time algorithm for the unrooted maximum agreement forest problem and
a O(ϕn ·poly(n)) time algorithm for the maximum parsimony distance problem; we shall formally define these problems
later. The algorithms are based on the insight that the optimal solutions to these problems are either convex characters
themselves, or “project down” onto convex characters - see [19] for related discussions. In the algorithmic literature it
is common to use O∗ notation, which suppresses polynomial terms, to denote the running times of exponential-time
algorithms. This is due to the dominance of the exponential terms in the running time. Here we do the same: the two
aforementioned algorithms thus have running times O∗(ϕ2n) and O∗(ϕn), respectively. We will only use this notation
for algorithmic running times, not for enumerative results.
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In this article we extend the results from [20] in several directions. We improve the O∗(2.6181n) algorithm for
the unrooted maximum agreement forest problem to O∗(2.2973n), and improve the O∗(2.42n) algorithm for the rooted
variant of this problem to O∗(2.0649n). In both cases the high-level idea is to leverage an existing branching-based
algorithm that can answer the question, “Is the optimum at most k?” in time exponential in k (as opposed to n). This
so-called fixed parameter tractable algorithm - see [7] for an introduction to such algorithms - is run incrementally up
to a carefully-chosen threshold k′. If the threshold is exceeded, i.e. the optimum is “large”, the optimum solution can
be found by searching through a comparatively small subset of convex characters.

Our third contribution concerns the NP-hard problem maximum parsimony distance on two-state characters [18,
21]. This problem has a trivial O∗(2n) time algorithm, but unlike the more general variant of the problem there is no
obvious link with convex characters. Here we establish such a link, using it to obtain an enumeration-based algorithm
with running time O∗(ϕn), and then improve this to O∗(1.5895n), also using enumeration. The strengthening to
O∗(1.5895n) is potentially of wider interest, because it operates by enumerating matchings (pairwise disjoint sets of
edges) in transformed variants of the input trees. There is an extensive literature on the enumeration of matchings in
trees1; see [27] for a survey. Due to the combinatorial structure of the maximum parsimony distance problem, we in
fact only need to consider certain carefully constrained subsets of matchings, and it is these that we bound/enumerate
using a technique from [23, 24]. Interestingly, this translates to a new result on normal (i.e. unconstrained) matchings;
in particular, we show that on (not necessarily phylogenetic) trees with in total n nodes, maximum degree 3 and no
degree-2 nodes adjacent to each other, there can be at most O(1.5895n) matchings. This supplements existing upper
bounds of O(ϕn), valid for arbitrary trees, and O(1.5538n) for trees of maximum degree 3 where all interior nodes have

degree 3 (see [2, Theorem 1 and Remark 5]; the precise constant is
√

1 +
√
2).

In Section 2 we give preliminaries. Section 3 describes our improvements for the maximum agreement forest
problem(s) while Sections 4 and 5 describe our improvement for the maximum parsimony distance problem on two
state characters; the first of these two sections builds the correspondence with convex characters, and the second
section builds the correspondence with matchings, the number of which we then bound. The proof of our new bound
is computer-assisted in view of the heavy calculations it involves. In an extended technical discussion (Section 6) we
provide a number of auxiliary insights and (lower) bounds emerging from Sections 4 and 5. Finally, in Section 7 we
place our findings in a broader context and propose several directions for future work.

2 Preliminaries

For general background on mathematical phylogenetics we refer to [25, 9]. An unrooted binary phylogenetic X-tree is
an undirected tree T = (V (T ), E(T )) where every internal vertex has degree 3 and whose leaves are bijectively labelled
by a set X, where X is often called the set of taxa (representing the contemporary species). We use n to denote |X|
and often simply write phylogenetic tree when it is clear from the context that we are talking about an unrooted binary
phylogenetic X-tree. Two phylogenetic trees T, T ′ on X are considered equal if there is an isomorphism between them
that is identity on X.

A character f on X is a surjective function f : X → C for some set C of states (where a state represents some
characteristic of the species e.g. number of legs). We say that f is an r-state character if |C| = r. Each character
naturally induces a partition of X and here we regard two characters as being equivalent if they both induce the same
partition of X. Hence, the states can simply be regarded as the blocks of a partition. An extension of a character f
to V (T ) is a function h : V (T ) → C such that h(x) = f(x) for all x in X. For such an extension h of f , we denote by
lh(T ) the number of edges e = {u, v} such that h(u) ̸= h(v). These edges are often called mutation edges, or simply
mutations, reflecting the biological origin of the model. The parsimony score of a character f on T , denoted by lf (T ),
is obtained by minimising lh(T ) over all possible extensions h of f . We say that a character f : X → C is convex on
T if lf (T ) = |C| − 1. Equivalently: a character f : X → C is convex on T if there exists an extension h of f such
that, for each state c ∈ C, the vertices of T that are allocated state c (by h) form a connected subtree of T . We call
such an extension h a convex extension of f . The convexity of a character can be tested in polynomial [11, 15] (in
fact, linear [3]) time. We note that a third, equivalent definition of convexity which does not use the machinery of
parsimony scores or extensions is as follows: a character f is convex on T if the minimal spanning trees induced by
the blocks of f are vertex-disjoint. In [20] the quantity gk(T ) was introduced, k ≥ 1, defined as the number of convex
characters of T in which each state contains at least k taxa (see Figure 1 for an illustration). The quantity g1(T ) is
therefore simply the total number of convex characters of T . Given a tree T on n taxa the quantity g1(T ) grows as
Θ(ϕ2n), independently of T , where ϕ ≈ 1.6181... is the golden ratio. Because the bases of the exponential terms we
describe in this article are often close together, and the use of these terms in bounding the worst-case running time of
algorithms, we give 4 decimal places and always round up. This will provide a better view of our improvements. In

1The number of matchings in a tree is often called the Hosoya Index.
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Section 4 of this article, g2(T ) plays a prominent role. It grows as Θ(ϕn), also independently of T [20].
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Figure 1: A phylogenetic tree T where X = {a, b, c, d, e, f, g}. For the given tree there are in total 233 convex characters
[20]. There are 8 convex characters in which each state appears on at least 2 taxa, so g2(T ) = 8. One of these characters
has exactly 1 state (abcdefg), 4 of these characters have 2 states (ab|cdefg, abc|defg, abcd|efg and abcde|fg), and 3
of these characters have 3 states (ab|cd|efg, abc|de|fg and ab|cde|fg). Here we use | to denote the states (i.e. blocks)
of the character (i.e. partition). The 8 figures verify the convexity of these characters: the minimal spanning trees
induced by the states of the character, shown in grey, are vertex-disjoint.

3 Improved exponential-time algorithms for agreement forests

Let T be a tree on X. For X ′ ⊆ X we write T [X ′] to denote the miminal subtree of T spanning X ′, and write T |X ′

to denote the phylogenetic tree obtained from T [X ′] by suppressing nodes of degree 2.
Let T and T ′ be two phylogenetic trees on X. Let F = {X1, X2, . . . , Xk} be a partition of X, where each block

Xi with i ∈ {1, 2, . . . , k} is referred to as a component of F . We say that F is an agreement forest for T and T ′ if the
following conditions hold.

(1) For each i ∈ {1, 2, . . . , k}, we have T |Xi = T ′|Xi.

(2) For each pair i, j ∈ {1, 2, . . . , k} with i ̸= j, we have that T [Xi] and T [Xj ] are vertex-disjoint in T , and T ′[Xi]
and T ′[Xj ] are vertex-disjoint in T ′.

Let F = {X1, X2, . . . , Xk} be an agreement forest for T and T ′. The size of F is simply its number of components, k.
Moreover, an agreement forest with the minimum number of components (over all agreement forests for T and T ′) is
called a maximum agreement forest (MAF) for T and T ′. The number of components of a maximum agreement forest
for T and T ′ is denoted by duMAF(T, T

′). The Unrooted Maximum Agreement Forest (uMAF) problem is to
compute duMAF(T, T

′); it is NP-hard [1, 16].2

There is also a rooted version of the maximum agreement forest problem but we defer a discussion of this until
later.

3.1 An O∗(2.2973n) algorithm for finding an uMAF

By part (2) of the definition of agreement forest, an agreement forest for T and T ′ is a convex character on both
T and T ′, but the converse does not necessarily hold. A tree has Θ(ϕ2n) convex characters and these can be listed

2Allen and Steel [1] also showed that another well-known phylogenetic dissimilarity measure, called Tree Bisection and Reconnection
distance (dTBR(T, T ′)), is related to the uMAF distance as follows: duMAF(T, T

′) − 1 = dTBR(T, T ′). For this reason some articles in
the literature define the size of an agreement forest as its number of components minus one. However, given the emphasis on enumerative
combinatorics in this article it is most natural to simply use the number of components. Our results, which are inherently asymptotic, hold
under either definition of size.
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efficiently [20]. Combined with the fact that it can easily be tested in polynomial time whether a convex character is
an agreement forest, [20] gave an elementary Θ∗(ϕ2n) = Θ∗(2.6181n) algorithm for computing duMAF(T, T

′), simply
by looping through all characters that are convex on T and noting the smallest agreement forest found.

To improve upon this, we leverage an existing algorithm by Chen et al. [5] that can answer the question “Is
duMAF(T, T

′) ≤ k?” in time O∗(3k) – and, when the answer is YES, can construct an agreement forest of size at most
k. Starting at 1 and incrementing k until the answer is YES gives an algorithm for computing duMAF(T, T

′). Such
fixed parameter tractable (FPT) algorithms have running times of the form O(f(k) · poly(n)) where f is a computable
function that does not depend on n. This decoupling of f(k) and n is a central design principle of such algorithms:
informally, they will run quickly when k is constant irrespective of how large n is [7]. This is why it is reasonable to
summarize the running times of such algorithms as O∗(f(k)).

Our idea is to use the algorithm from Chen et al. [5] up to a certain tipping point k′ = cn, for a constant c still to
be determined, exploiting the fact that 3k is far smaller than 2.6181n up to quite large values of k. If the algorithm
from Chen et al. [5] finds an agreement forest, we are done. Otherwise (i.e. the answer is still NO) we switch to
enumeration of convex characters. Specifically, we list all characters that are convex on T and which have more than k′

states. For each such character we check whether it is an agreement forest of T and T ′ and note the smallest agreement
forest found this way.

To put this into practice, we need to bound the number of convex characters with ‘many’ states, ensure that they
can be listed/enumerated efficiently, and determine the optimal tipping point k′.

Let us define the size of a convex character as its number of states/blocks. We will show that there is a dynamic
programming (DP) algorithm that can enumerate every convex character with exactly k states for a tree T with a
running time that will be bounded by the number of convex characters with exactly k states.

Steel [26] gives us an exact expression for how many convex character there are with exactly k states, denoted
by g(T, k) which equals

(
2n−k−1

k−1

)
. Note that this number is independent of the topology of T . The whole point of

designing this DP is not to calculate how many convex characters there are but where they come from, so they can
be efficiently constructed. Kelk and Stamoulis [20] gave a DP algorithm that enumerates convex characters where
each state has at least a certain number of taxa. We draw inspiration from this algorithm and construct a similar DP
algorithm. The DP requires the tree to be rooted, in order to establish an unambiguous parent-child relation between
nodes. This can be easily achieved by subdividing an edge of the tree, since the presence of the subdividing vertex
does not change the space of convex characters.

For a node u of a tree T , we let Tu be the subtree rooted at u. A convex character for Tu with k states can be
created in two ways. It can be the disjoint union of a convex character from the left child node of u, and the right,
such that the combination has k states. Or it can be a combination of a convex character from the left child node
and the right whereby a state from the left character is merged with a state from the right i.e. the spanning tree for
this merged state traverses the root. Because of this we need to store more than simply all the convex characters of
subtrees in our DP algorithm; we also have to note which states of a convex character can ‘reach the root’; we will
formalise this in due course.

To keep track of these distinctions, for each node u of tree T we enumerate ordered pairs (f,A) where f is a
convex character of Tu such that there is an optimal extension of f to Tu whereby the root of Tu is assigned state A.
Essentially, this means that, if desired, state A of f will be available for merging with another state in the tree beyond
Tu.

We write (f, ∅) to denote the situation when f is a convex character of Tu but we simply do not care about which
state is assigned to the root of Tu. We will not be merging any state of this character with a state from beyond Tu,
which is why we do not care.

For the DP algorithm we store two types of values. First, the number of convex characters with k states, denoted
by g(Tu, k), and second the number of pairs (f,A), A ̸= ∅, such that f has k states one of them is A who is assigned
to the root of Tu, denoted by h(Tu, k). Note that g(Tu, k) simply counts all (f, ∅) for Tu where f has k states.

Let us consider a simple example. Suppose u has two children, one a taxa c, the other a parent of two taxa labelled
a and b. Tu has five convex characters:

t = {{a, b, c}}

x = {{a, b}, {c}}

y = {{a, c}, {b}}

z = {{b, c}, {a}}

s = {{a}, {b}, {c}}.
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In this case g(Tu, 1) = 1, g(Tu, 2) = 3 and g(Tu, 3) = 1. We have h(Tu, 1) = 1 because this only counts the tuple
(t, {a, b, c}). Further more we have h(Tu, 2) = 4 because this counts the tuples (x, {a, b}), (x, {c}), (y, {a, c}) and
(z, {b, c}). h(Tu, 2) does not count (y, {b}) because state {a, c} blocks b from connecting to u. The same is true for
(z, {a}). Finally h(Tu, 3) = 3 counting (s, {a}), (s, {b}), (s, {c}).

Let L(Tu) be the set of leaves of the subtree Tu and let mu = |L(Tu)|. This means that in the equations below k
(and thus i and j) have a maximum value mu.

We compute the values g(Tu, k) and h(Tu, k) for each value k using two recursions and move bottom-up from the
leaves. If we assume for a node u that the left node l and right node r are calculated correctly the values of u are
calculated as follows:

h(Tu, k) =
∑
i,j

i+j=k

h(Tl, i)g(Tr, j) + g(Tl, i)h(Tr, j) +
∑
i,j

i+j=k+1

h(Tl, i)h(Tr, j) (1)

Note that i, j ≥ 1 because every subtree Tl and Tr is nonempty and therefore must have at least 1 state. Each pair
(f, C) in Tu that is counted by the h(Tu, .) quantities has 3 possible origins, demonstrated in Figure 2.

1. A pair (fl, A) from the left child node, A ̸= ∅, is combined with a pair (fr, ∅) from the right child node to create
the pair (fl ∪ fr, A). The character fl ∪ fr has |fl|+ |fr| states.

2. A pair (fl, ∅) from the left child node is combined with a pair (fr, B) from the right child node, B ̸= ∅, to create
the pair (fl ∪ fr, B). The character fl ∪ fr has |fl|+ |fr| states.

3. A pair (fl, A) from the left child, A ̸= ∅, is combined with a pair (fr, B) from the right child node, B ̸= ∅, to
create the pair (fl ∪ fr, A ∪B). The character fl ∪ fr has |fl|+ |fr| − 1 states.

The first two origins are counted in the first sum of Equation 1. The third origin is counted in the second sum of
that equation.

u

l r

(fl, A) (fr, ∅)

u

l r

(fl, ∅) (fr, B)

u

l r

(fl, A) (fr, B)

Figure 2: All 3 possible origins for a pair (f, C), as counted by h(Tu, .).

The equation for g(Tu, k) is as follows. The logic behind this equation is similar to that behind h(Tu, k); see Figure
3.

g(Tu, k) =
∑
i,j

i+j=k

g(Tl, i)g(Tr, j) +
∑
i,j

i+j=k+1

h(Tl, i)h(Tr, j) (2)

The only thing that remains is a way to enumerate these convex characters. In other words, a way to backtrack
in the tree T . The recursion will be this guide. One way is looking at Equation 1 as if it were a list that starts with
h(Tl, 1)g(Tr, k− 1), followed by h(Tl, 2)g(Tr, k− 2), passing through g(Tl, 1)h(Tr, k− 1) and ending at h(Tl, k)h(Tr, 1).
Rewriting this will show it in a more formal way.

h(Tu, k) =
∑
i

h(Tl, i)g(Tr, k − i) +
∑
i

g(Tl, i)h(Tr, k − i) +
∑
i

h(Tl, i)h(Tr, k + 1− i) (3)

We do the same thing for g(Tu, k).

g(Tu, k) =
∑
i

g(Tl, i)g(Tr, k − i) +
∑
i

h(Tl, i)h(Tr, k + 1− i) (4)

Thus finally we have a way to enumerate3 every convex character with exactly k states.

3We note that, if desired, the term g(Tu, k) can be replaced by Steel’s closed expression
(2n−k−1

k−1

)
. However, when enumerating and

constructing such characters the explicit recurrence for g(Tu, k) is required.
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u

l r

(fl, ∅) (fr, ∅)

u

l r

(fl, A) (fr, B)

Figure 3: The two possible origins for a convex character with k states.

Theorem 1. For a pair of binary trees T and T ′ we can compute and enumerate each convex character with at least
k states for T , and determine whether it is a uMAF, in O∗(f(n, k)) time with f(n, k) =

∑n
r=k

(
2n−r−1

r−1

)
.

Proof. For each value of r between k and n we run the DP algorithm described above. The DP algorithm can easily be
leveraged to impose a canonical ordering on the convex characters being counted. This is because the h and g values
are cleanly defined as a summation of terms. For each node we calculate at most n different h(Tu, r) and n different
g(Tu, r) values, each taking at most linear time to calculate. This can be done in polynomial time, as expected. For each
convex character we backtrack through the dynamic programming tree in linear time. We then test if the character
is also convex on T ′ which can be done in linear time according to Bachoore and Bodlaender [3]. If the character is
convex on both trees, testing if it is an agreement forest can also be done in low-order polynomial time. Because we
have to do this for each convex character with exactly r states this will take O∗(

(
2n−r−1

r−1

)
) time. The final running

time arises because we loop through all values of r (i.e. number of states) between k and n.

To get the overall runtime O∗(2.2973n) we need to solve the equation 3k = f(n, k). This equation arises because
we wish to balance the time taken by the FPT algorithm from Chen et al. [5], which is O∗(3k), with the time required
to enumerate convex characters after the FPT algorithm has stopped.

Let us analyse the sum f(n, k): the quotient of two consecutive terms is(
2n−r−2

r

)(
2n−r−1

r−1

) =
(2n− 2r)(2n− 2r − 1)

r(2n− r − 1)
,

which is greater than 1 for r < r0 = 10n−3−
√
20n2−20n+9
10 = (1 − 1√

5
)n + O(1), and less than 1 for r > r0. In other

words, the terms increase up to r0 (provided that k < r0), and decrease afterwards. We can combine this with the
known bound

(
n
pn

)
≤ enH(p), where H(p) is the entropy function H(p) = −p ln p − (1 − p) ln(1 − p) (see for instance

Example 11.1.3 in [6]), to obtain the following bound on f(n, k):

Theorem 2. For positive integers n and k, we have, with c = k
n ,

f(n, k) ≤

exp
(
(2− c)H

(
c

2−c

)
n+O(lnn)

)
c ≥ c0 = 1− 1√

5
,

exp
(
(2− c0)H

(
c0

2−c0

)
n+O(lnn)

)
c ≤ c0 = 1− 1√

5
.

Proof. By the aforementioned bound on binomial coefficients, we have(
2n− r − 1

r − 1

)
=

r

2n− r

(
2n− r

r

)
≤ r

2n− r
exp

(
(2n− r)H

( r

2n− r

))
= exp

((
2− r

n

)
H
( r/n

2− r/n

)
n+O(lnn)

)
for all positive integers r < n. Next note that

d

dx
(2− x)H

( x

2− x

)
= 2 ln(2− 2x)− ln(2− x)− lnx,

which is positive for 0 < x < c0, and negative for c0 < x < 1. Now we distinguish the two cases c = k
n ≥ c0 and

c = k
n ≤ c0:

• Suppose first that c ≥ c0. We have r
n ≥ c ≥ c0 for all r ≥ k, and since the function x 7→ (2 − x)H( x

2−x ) is
decreasing on the interval (c0, 1), this implies that(

2− r

n

)
H
( r/n

2− r/n

)
≤ (2− c)H

( c

2− c

)
6



for all r ≥ k. Thus (
2n− r − 1

r − 1

)
≤ exp

(
(2− c)H

( c

2− c

)
n+O(lnn)

)
for every r ≥ k. There are at most n such terms in the sum for f(n, k), and the resulting factor n can be absorbed
into the error term to yield the desired upper bound in this case.

• Now suppose that c ≤ c0. Since the function x 7→ (2− x)H( x
2−x ) attains its maximum when x = c0, we obtain(

2n− r − 1

r − 1

)
≤ exp

(
(2− c0)H

( c0
2− c0

)
n+O(lnn)

)
in this case by an analogous argument, and the desired upper bound follows again.

We compare this with the running time of the FPT algorithm, i.e. 3k. Since subexponential factors do not matter
to us, this amounts to the equation

e(2−c)nH( c
2−c ) = 3cn,

as one easily finds that e(2−c0)H(
c0

2−c0
) > 3c for c < c0. Solving the equation above for c gives a numerical value of

c ≈ 0.7571, and finally the desired runtime of O∗(2.2973n). Concluding:

Theorem 3. Given two trees T, T ′ on n taxa, an unrooted maximum agreement forest for T and T ′ can be computed
in time O∗(2.2973n).

3.2 An O∗(2.0649n) algorithm for finding a rMAF

A rooted agreement forest is a variant of an agreement forest defined on rooted trees i.e. trees where there is a
designated root and all arcs are oriented away from it. The corresponding optimisation problem Rooted Maximum
Agremeent Forest (rMAF) is also NP-hard. We omit the definition and refer to recent survey articles such as [4]
for an overview.

There is a O∗(2.42k) time algorithm for determining whether two rooted trees T, T ′ have a rooted agreement forest
of size at most k [29]. In the worst case iterative deepening will yield an algorithm with running time O∗(2.42n). Prior
to this article this was the best-known exponential-time (as opposed to parameterised) algorithm for this problem.
With the same arguments as in the previous section we can reduce the base of the exponent. It is easy to show that,
given a convex character on T , one can test in polynomial time if this induces a rooted agreement forest for T and T ′.
Thus we only have to solve the following equation for c.

2.42cn = e(2−c)nH( c
2−c )

This yields c ≈ 0.8204, which in turn results in a runtime of O∗(2.0649n).

Theorem 4. Given two rooted trees T, T ′ on n taxa, a rooted maximum agreement forest for T and T ′ can be computed
in time O∗(2.0649n).

4 Maximum parsimony distance on two-state characters

Recall from the preliminaries the definition of the parsimony score lf (T ) where f is a character and T is a phylogenetic
tree on X. This is the foundation of the following optimisation problem, introduced in [10, 22]. Informally, the goal is
to identify a character that has high parsimony score on one of the input trees and small on the other.

Definition 1. Given two phylogenetic trees T and T ′ on the same set X of taxa, the parsimony distance between these
trees is defined as

dMP (T, T
′) = max

f
|lf (T )− lf (T

′)|

A character f which maximises this distance is called an optimal character.
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Note that, due to the fact that the parsimony score of a tree (for a given character) is not affected by the presence
or absence of a root, parsimony distance is oblivious to whether the input trees are rooted or unrooted.

The problem is NP-hard and has attracted quite some attention in recent years. See recent articles such as [17, 28]
for an overview of its theoretical and practical significance; in particular, it can be leveraged to efficiently generate very
strong lower bounds on duMAF(T, T

′). Kelk and Stamoulis [20] described and implemented an O∗(1.6181n) algorithm
that calculates dMP for two trees. The algorithm exploits the fact, proven in [18], that there exists an optimal character
f which is convex on one of the two input trees and which has at least two taxa per state.

In this section we study a different variant of the problem, known as d2MP . The definition is the same except that
we are restricted to characters f that only have two states. This problem, which yields lower bounds on dMP , is also
NP-hard [18] and permits a trivial O∗(2n) time algorithm simply by guessing the state of each taxon in X; see also
[21] for further discussion of the problem. Interestingly, the O∗(1.6181n) time algorithm for the dMP problem does not
work for d2MP . This is because the pivotal assumption, that there exists an optimal character that is convex on one
of the two trees, no longer holds when restricted to just two states. Nevertheless, with some effort we can establish
a link with convex characters. We will use this link to prove the same O∗(1.6181n) runtime for d2MP - and then via
matchings we will reduce the base of the exponent further.

We say that an extension g of a character f on a tree T is optimal if lg(T ) = lf (T ) i.e. it is an extension which
achieves the minimum number of mutations. From this point on we will refer to the states in a two-state character as
red and blue.

Before proving our main theorem we first require some auxiliary lemmas.

Lemma 1. Let T be a tree on X and f2 a two-state character on X. Let g2 be an optimal extension of f2 to T . For
every internal node u of T , at most one neighbour of u has a colour different to g2(u).

Proof. Suppose that there is an internal node u which does have more than one neighbour coloured with a colour
different to g2(u). This means that it has two or three neighbours with a different colour. Suppose it has three. Let
w.l.o.g. u be red and all its neighbours blue. Flipping u to blue would reduce the number of mutations by three,
contradicting the fact that g2 is an optimal extension. Suppose it has two. In this case flipping the colour of u reduces
the number of mutations by one which again contradicts the fact that g2 is optimal.

We obtain a small but useful corollary thanks to this lemma.

Corollary 1. Let T be a tree on X and f2 a two-state character on X. Let g2 be an optimal extension of f2 to T .
Consider the forest of connected components obtained by deleting the mutation edges in g2, i.e. edges {u, v} where
g2(u) ̸= g2(v). Every vertex with degree 0 in this forest is labelled by a taxon from X, and every leaf (i.e. degree 1
node) in this forest is labelled by a taxon from X.

Proof. If there is a degree-0 node u in the forest that is not labelled by a taxon from X, then u is an internal node of
T , and the colour assigned to u by g2 is distinct from that assigned to all 3 of its neighbours; this contradicts Lemma
1. Similarly, suppose there is a leaf u in a connected component of the forest that is not labelled by a taxon. The leaf
must, again, be an internal node of T . Meaning that, in g2, it has two neighbours with a different colour to g(u). This
also contradicts Lemma 1.

The following lemma resembles Observation 3.3 from Kelk and Fischer [18] but is now rewritten in our notation
and with an extended proof.

Lemma 2. Let T and T ′ be the input to the problem d2MP . There exists an optimal two-state character f2, a tree
T ∗ ∈ {T, T ′} and an optimal extension g2 of f2 to T ∗, such that every connected component of the forest obtained by
cutting mutation edges of T ∗ (with respect to g2), contains at least two taxa.

Proof. Let f2 be an optimal two state character. Assume without loss of generality that lf2(T ) ≤ lf2(T
′). Let g2 be an

optimal extension of f2 to T and consider the forest induced by cutting the mutation edges of g2 in T . Suppose that
there is a connected component in the forest with a single node x. From Corollary 1 we know that x is labelled by a
taxon, and therefore must have had a different colour to its unique parent in g2. Flipping the colour of x will create a
new two-state character f ′

2. Let g
′
2 be the extension of f ′

2 to T which assigns states to interior nodes of T in the same
way as g2. Extension g′2 has one fewer mutation than g2, so lf ′

2
(T ) ≤ lf2(T )− 1. However, lf ′

2
(T ′) ≥ lf2(T

′)− 1. To see
why this is, observe that flipping the state of a single taxon can reduce the parsimony score of a character on a given
tree by at most one. Hence, lf ′

2
(T ′)− lf ′

2
(T ) ≥ lf2(T

′)− lf2(T ) = d2MP (T, T
′), so f ′

2 is also an optimal character, and
g′2 is an optimal extension of it to T . Observe that the forest induced by g′2 has one fewer singleton component than
g2. We iterate this process until we have an optimal two-state character f∗

2 , and a corresponding optimal extension g∗2
of it to T , such that no singleton components appear in the induced forest. At this point, every connected component
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in the induced forest contains at least two nodes, and thus at least two leaves; by Corollary 1 these leaves must be
labelled by taxa. So we are done.

We define a partial extension of a character to a tree T similarly to an extension, except that some interior nodes
of T potentially have no state assigned to them; we call these nodes uncovered.

Definition 2. Consider a convex character f on a tree T . The natural partial extension is the partial extension obtained
by, for each state, taking the minimal connecting subtree of all the taxa within that state. If this partial extension covers
every node of T (i.e. it is an extension) we call it the natural covering extension.

Lemma 3. Let f be a convex character on a tree T . Every optimal extension of f to T can be obtained by expanding the
natural partial extension of f to T to the uncovered nodes. In other words, the natural partial extension is unavoidable
in an optimal extension.

Proof. Towards a contradiction, suppose there exists a convex character f on T and an optimal extension g of f to
T that is not an expansion of the natural partial extension. Then, for some state s of f , at least one node on its
minimal connecting spanning tree is not assigned to state s. As a result, at least one edge on the minimal connecting
spanning tree for s is a mutation edge in g. Hence, if one cuts mutation edges in g, the state s will occur in two or
more connected components of the resulting forest. Every state of f must occur in at least one connected component
of the forest, so the number of connected components in the forest is at least equal to the number of states in f plus
1. The number of connected components in this forest is lf (T ) + 1, so lf (T ) is at least equal to the number of states
in f . However, a convex character on T has by definition the property that its parsimony score on T is equal to the
number of states in the character minus one. Hence, f cannot possibly be convex; contradiction.

The following lemma is actually somewhat stronger than we need - we only require one direction of the implication
- but for completeness we prove both directions.

Lemma 4. Let f be a convex character on a tree T . The natural covering extension of f exists if and only if there is
a unique optimal extension of f to T .

Proof. The fact that the existence of the natural covering extension implies uniqueness, follows immediately from
Lemma 3. To prove the other direction, we use the contrapositive. Assume that the natural covering extension does
not exist. Then there exists an interior node u that is uncovered by the natural partial extension. Let g be an
optimal extension of f to T . We will use an algorithmic argument to prove that g cannot be unique. Let p, q, r be
the three neighbours of u in T and let Tw, where w ∈ {p, q, r}, be the pendant subtree of T rooted at w. Let Sw,
where w ∈ {p, q, r}, be the set of states appearing on taxa in Tw, with respect to f . Crucially, Sp, Sq and Sr are
mutually disjoint, because otherwise u would have been covered in the natural partial extension. Now, we root T
by subdividing the edge {u, r} with a root node ρ and we call this new tree T ′. We run Fitch’s algorithm on T ′ to
compute an optimal extension of f to T ′; we provide a summary of the algorithm in Appendix A. We note that an
optimal extension for T can be obtained from an optimal extension for T ′ simply by ignoring the state assigned to the
root ρ; hence, if two optimal extensions for T ′ differ on a node that is distinct from ρ, then there exist at least two
different optimal extensions for T . Towards this result, observe that in the bottom-up phase of Fitch’s algorithm, a
nonempty set S′

w ⊆ Sw of states will be assigned to node w, w ∈ {p, q, r}. By the disjointness of the Sw, the S′
w are

also disjoint. Hence, in the bottom-up phase the set S′
p ∪ S′

q ∪ S′
r of states will be assigned to the root. Now, in the

top-down phase, we are allowed to assign any state from S′
p ∪ S′

q ∪ S′
r to the root. If we pick a state s ∈ S′

p, the node
u will definitely be assigned state s. If we pick a state t ∈ S′

q, u will definitely be assigned t. Given that s ̸= t, due to
disjointness of S′

q and S′
p, u ̸= ρ, and the fact that all possible executions of the top-down phase of Fitch’s algorithm

produce an optimal extension, we conclude that there exists more than one optimal extension of f to T .

Let T and T ′ be the input to the problem d2MP . Let f2 be an optimal two-state character, g2 an optimal extension
of f2 and T ∗ ∈ T, T ′ such that every connected component of the forest obtained by cutting mutation edges of T ∗

(with respect to g2), contains at least two taxa. These properties and existence are guaranteed by Lemma 2. Consider
the forest obtained by cutting mutation edges (with respect to g2) in T ∗. Let fc be the character (i.e. partition of X)
induced by the connected components of the forest. By the same lemma, each state of fc contains at least two taxa.
Moreover, by construction, fc is convex on T ∗. Next, we have a crucial lemma.

Lemma 5. The natural partial extension of fc to T ∗ is a natural covering extension.

Proof. Recall that fc was constructed from an optimal extension g2 of an optimal two state character f2. We know
from Lemma 1 that, in g2, every internal node u of T ∗ must have at least two neighbours with the same colour as u.
Thus, in the forest obtained from g2, every internal node must have degree 2 or 3 (and every component of the forest
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contains at least 2 taxa). Furthermore we also know from Corollary 1 that every leaf in a component of the forest is
labelled by a taxon. This means that for every internal node u of T ∗, there exist two distinct taxa x, y ∈ X such that
x and y are assigned the same state by fc, and u lies on the unique path from x to y in T ∗. Given that the natural
partial extension was created using minimal spanning trees, it follows that the natural partial extension assigns a state
to every internal node of T ∗, and thus is a natural covering extension.

From Lemma 4 and 5 we obtain the following corollary.

Corollary 2. The convex character fc has a unique optimal extension on T ∗, which is the natural covering extension.

In the remainder of the paper we shall call convex characters where the natural covering extension exists (which
by Lemma 4 are exactly those characters with unique optimal extensions) covering convex characters. We have shown
that fc is such a character4. Now we have everything to prove our main theorem.

Theorem 5. Let T and T ′ be the input to the problem d2MP . There exists a covering convex character fc on one of
the trees, say T , such that (i) each state of fc contains at least 2 taxa and (ii) the states of fc can in polynomial time
be relabelled red and blue, obtaining a 2 state character f2, such that d2MP (T, T

′) = |lf2(T )− lf2(T
′)| = lf2(T

′)− lf2(T ).

Proof. The earlier lemmas and corollaries prove the existence of a covering convex character fc on T ∗ ∈ {T, T ′}. We
know that (i) holds, by construction of fc. Now, we know that the desired character f2 exists - because we used it
(together with g2) to build fc in the first place - but to satisfy (ii) we have to show how to efficiently obtain f2 given
only fc. We show (up to symmetry of red and blue) that f2 is completely determined by fc, and can easily be obtained
from it.

Crucially, due to being a covering convex character, there is a unique optimal extension of fc to T ∗, which is
the natural covering extension. Due to this uniqueness, any standard polynomial-time algorithm used for computing
optimal extensions (e.g. Fitch’s algorithm [11]) will obtain it; let us call this gc. This natural covering extension has,
by construction, exactly the same mutation edges as f2. Hence, fc partitions X exactly the same way as the deletion of
mutation edges in g2 partitions X. We now need to decide which states of fc will become blue, and which will become
red.

We define a new graph G = (V,E) as follows.

V : For every connected component in the forest obtained by cutting mutation edges of gc in T ∗, we add a vertex to
V representing the connected component.

E: For every mutation edge {u1, u2} in the optimal extension gc, we add the edge {v1, v2} where the endpoints v1
and v2 are the connected components that u1 and respectively u2 belong to.

Note that G is still a tree; if it had cycles then so would T ∗. Recall from Corollary 2 that gc is unique. This means
that G is also unique. Because G is a connected tree we can see it as a bipartite graph with a unique bipartition. This
bipartition of X forms a two-state character. And because of the uniqueness of G the mapping from fc to a two-state
character is well-defined.

Finally, we note that the construction of G and the creation of the two-state character can be performed in
polynomial time. This concludes the proof.

Now that Theorem 5 has been proven it is time to use it algorithmically. To compute d2MP (T, T
′) we loop over all

covering convex characters fc of T , derive f2 from it, compute |lf2(T )− lf2(T
′)| and note the largest value we see. We

then symmetrically repeat the procedure for T ′, simply because we don’t know whether T ∗ is T or T ′. The character
f2 producing the largest value will be an optimal character.

All that remains is producing an algorithm that can enumerate all covering convex characters fc of a tree T . An
elementary approach is to loop through the space of all convex characters where each state has at least two taxa, and
discard those that are not covering convex characters. We can test in polynomial time whether a convex character is a
covering convex character by constructing the natural partial extension and checking whether it covers all nodes of T .
Kelk and Stamoulis [20] proved that there are Θ(ϕn) convex characters that have at least 2 taxa in each state and they
can be efficiently listed. Putting all these pieces together, we end up with a running time of O∗(ϕn) for calculating
d2MP (T, T

′).

Theorem 6. Given two trees T, T ′ on a set X of n taxa, d2MP (T, T
′) can be computed in time O∗(ϕn).

But we can do better! In the next section we will show that there are actually at most O(1.5895n) covering convex
characters with at least two taxa per state, and that these can be efficiently listed, immediately giving a faster algorithm
for d2MP . To prove this, we will turn to the topic of matchings.

4Note that not all convex characters are covering. For example, consider the unique phylogenetic tree on 3 taxa. If each of these three
taxa is assigned a different state by a character, the single interior node of the tree will be uncovered by the natural partial extension. The
8 convex characters shown in Figure 1 are, however, covering.
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5 Matchings on a core tree

We proved that fc, from which we can construct an optimal two-state character for d2MP (T, T
′), is a covering convex

character on one of the input trees, and has at least two taxa in every state. The following observation shows that
some characters with these properties can be safely ignored. This will ultimately allow us to improve the running time
given in Theorem 6.

Suppose, without loss of generality, that fc has a lower parsimony score on T than T ′. Suppose furthermore that T
contains two taxa a and b whereby the path from a to b has exactly three edges, and that fc assigns a and b the same
state - but that no other taxa are assigned this state. See Figure 4. An optimal extension here will be the natural
covering extension, so the two red dashed edges in the figure will definitely be mutation edges in this extension. If fc
is mapped back to f2 in the way described in Theorem 5, f2 will assign a and b the same colour (say, blue) and the
two mutation edges will be mutations from blue to red. But suppose, similar to the arguments used in Lemma 2, that
we flip a and b both to red in f2, obtaining a new two-state character f ′

2. We have that lf ′
2
(T ) ≤ lf2(T )− 2, because

the two mutation edges disappear, but we also have lf ′
2
(T ′) ≥ lf2(T

′)− 2, because changing the state of two taxa can

reduce the parsimony score by at most 2. Hence f ′
2 is also an optimal character for the d2MP instance, and still obeys

the additional criteria specified in Lemma 2. In the same way fc was obtained from f2, we can now construct f ′
c from

f ′
2. An algorithm that can locate f ′

c is thus also guaranteed to optimise d2MP . The important fact is that in an optimal
extension of f ′

c, neither of the red edges shown in Figure 4 will be mutation edges.

a b

Figure 4: Red dashed edges are mutating (i.e. bichromatic) edges. When solving d2MP we can safely ignore covering
convex characters whose natural covering extensions have this local ‘island’ structure.

This observation shows that we need to find a way to skip over covering convex characters that have the kind of
pointless ‘islands’ described above and shown in Figure 4. To do this we turn to matchings. Recall that a matching of
a graph is simply a subset of edges that do not share any endpoints. We will show a natural bijective correspondence
between matchings (on an appropriately transformed tree) with covering convex characters that have at least two taxa
in each state.

Definition 3. The core tree Tc for a phylogenetic tree T on X is the non-phylogenetic tree that remains when every
node labelled by X is removed.

Lemma 6. There exists a bijective function between covering convex characters of T with at least two taxa per state
and matchings in Tc.

Proof. We will prove this lemma by constructing two injective functions. The first one will map a covering convex
character into a matching and the second one will be the other way round. Let fc be a covering convex character
on T with at least two taxa per state. We map fc to the set of mutation edges in the unique optimal extension of fc
to T provided by Corollary 2. Note that this mapping is well-defined, since the optimal extension (and thus the set
of induced mutation edges) is unique. Observe that none of these mutation edges can be incident to an element of
X, because there are at least two taxa per state in fc, so all these edges survive in Tc. Now, suppose the mutation
edges do not form a matching in Tc. This means that there are two mutation edges that share an endpoint in Tc,
and thus also in T . This is in contradiction with Lemma 1. Hence, the mutation edges must form a matching in Tc.
To see that the mapping from fc to matchings in Tc is injective, suppose fc and f ′

c are two distinct covering convex
characters on T i.e. they induce different partitions of X. Then there exist x, y ∈ X such that x ̸= y and without loss
of generality x, y belong to the same state s in fc but to different states in f ′

c. In the unique optimal extension of fc
to T , all edges on the path from x to y must be covered by the spanning tree for s. However, in the unique optimal
extension of f ′

c to T , at least one edge on this path does not lie on any of the spanning trees induced by the states of
f ′
c - otherwise x, y would belong to the same state5. Hence the subset of edges of T that are covered by spanning trees
in the unique optimal extension of fc to T is not the same subset as those corresponding to f ′

c. The set of mutation
(and thus matching) edges is exactly those not on spanning trees, and as noted earlier all these mutation edges survive
in Tc, so fc and f ′

c induce different matchings in Tc. Hence, injectivity holds.

5Recall that the spanning trees will be vertex-disjoint, because the tree has maximum degree 3, so it cannot occur that the path is the
disjoint union of several spanning trees from distinct states.
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In the other direction, consider a matching M of Tc. Observe that degree-1 nodes in Tc correspond to internal
nodes of T that have two taxa children, and degree-2 nodes in Tc to internal nodes of T that have one taxon child.
Suppose we delete the edges in M from Tc, obtaining the forest Tc − M . We map M to the natural partition of X
induced in T by the connected components of Tc − M , i.e. each node in Tc − M contributes the taxa it is adjacent
to in T . This mapping is clearly well-defined. If we can show that each connected component of Tc − M contains
at least one degree-1 node (or at least two degree-2 nodes), where here the degrees refer to Tc before the deletion of
M , it follows that the mapping produces a partition of X whereby each block contains at least two taxa. Suppose
a connected component consists only of a single node. Then it must be a degree-1 node, and thus correspond to 2
taxa, so we are fine. (It cannot be a degree-2 or degree-3 node, because then the component would contain at least
one edge). So suppose a connected component contains at least one edge, and thus has at least two leaves in Tc −M .
Note that nodes of a connected component of Tc −M cannot be degree-3 nodes in Tc, because this would mean that
the connected component could actually be grown further: this is because there can be at most one matching edge
incident to a degree-3 node. So for a connected component in Tc −M with at least two leaves in Tc −M each of the
leaves must be a degree-1 or degree-2 node. Hence, we indeed obtain a partition of X with at least two taxa per block.
To see that this partition is in fact a covering convex character, observe that the connected components of Tc − M
are (when projected onto T ) minimal spanning trees for the blocks of X. They are minimal because, as noted above,
the leaves of components in Tc −M must be degree-1 or degree-2 nodes in Tc, and such nodes are (in T ) incident to
taxa. The minimal spanning trees cover all nodes of T , because the connected components of Tc −M cover all nodes
of Tc. From this we conclude that the partition of X that we created is indeed a covering convex character (and that
the edges in M are precisely the mutation edges in the unique optimal extension for this character).

Finally, to see that the mapping from matchings to characters is injective, suppose two matchings M,M ′ of Tc map
to the same covering convex character fc with at least two taxa per state. As stated above, M and M ′ are mutation
edges in an optimal extension of fc to T . By Corollary 2 a covering convex character has a unique optimal extension,
so M = M ′.

Definition 4. We call a matching M in Tc illegal if Tc − M has a component consisting of a single edge that is
adjacent to two edges in M . Otherwise it is called a legal matching.

Observe that illegal matchings induce fc with the ‘islands’ discussed at the start of the section, and shown in Figure
4. We know it does not compromise optimality to ignore such characters. Hence, in solving d2MP we can henceforth
focus on counting and listing only legal matchings.

What is an upper bound for the number of legal matchings in Tc, and thus an upper bound for the number of
candidate fc? To answer this question we establish a recursion, which we will also use to create a DP algorithm to
enumerate all the legal matchings. When bounding the recursion we will require some auxiliary support from the
software package Mathematica; we shall explain this further in due course.

To calculate the upper bound, we apply the method described in [23] (and earlier in [24]). To this end, we need to
introduce some additional notation.

In the remainder of this section, to ensure relevance to the wider matchings literature, T will refer to any non-
phylogenetic tree which has maximum degree 3. (In our specific d2MP applications context, T will be the tree Tc created
earlier in the section, but this extra information is not necessary.) Again, to keep consistency with the matchings
literature, we will let n henceforth refer to the total number of nodes in T , not just the number of leaves. Fortunately,
this will not asymptotically distort any running times when we translate the results back to the phylogenetic context.
That is because a phylogenetic tree with |X| leaves has exactly |X| − 2 internal nodes, so Tc (where we enumerate
legal matchings) has exactly |X| − 2 nodes in total.

We consider all trees as rooted trees of maximum degree 3, where each node has at most one left child and at most
one right child. We select an arbitrary leaf of the tree as the root; this allows us to avoid certain technicalities later
on.

We show how to count legal matchings in a recursive fashion, going up from the leaves to the root. For this purpose,
it will be convenient to allow empty trees with no nodes in the following. Define

e(T ) = [T is empty] =

{
1 T is an empty tree,

0 otherwise.

Moreover, we consider two special types of matchings of a rooted tree T . In this context, we think of T as a rooted
subtree of a larger rooted tree (e.g., the subtree rooted at u in Figure 5):

• Legal matchings where the root has only one child and only one grandchild, the root is not covered by a matching
edge, but its child is. The number of these matchings is denoted by b0(T ) and illustrated in Figure 5.
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u

c

gc

Figure 5: Legal matchings counted by b0(T ), where T is the subtree rooted at u. A red dashed edge represents an edge
in the matching. As in the other figures in this section the edge entering from above represents the edge that enters
the subtree in the original tree.

u

c

Figure 6: Legal matchings counted by b1(T ). A red dashed edge represents an edge in the matching.

• Legal matchings where the root has one child only and is covered by a matching edge. Their number is denoted
by b1(T ) and illustrated in Figure 6.

We denote the number of remaining legal matchings not covering the root by a0(T ), illustrated in Figure 7.

u

l r

u

l

Figure 7: Legal matchings counted by a0(T ).

Finally, we let a1(T ) be the number of remaining legal matchings covering the root of T , illustrated in Figure 8.

u

l r

u

l r

Figure 8: Legal matchings counted by a1(T ). A red dashed edge represents an edge in the matching.

If T is empty, we set a0(T ) = a1(T ) = b0(T ) = b1(T ) = 0. Let T be a rooted tree whose root branches are Tl and
Tr (possibly empty). More formally, Tl (respectively, Tr) is the subtree of T rooted at the left (respectively, right)
child of T . In the following recursions, whereby T can be thought of as representing a subtree of a larger tree, we
emphasise that a0, a1, b0, b1 count matchings that are legal on the original tree, not just the subtree. This is important
because although subtrees Tl, Tr encountered in the recursion can potentially have a root of degree 1 or 2 (or even
degree 0), the subtree will have an incoming edge when viewed in the context of the original tree. This ensures that
some matchings which would be illegal if the subtree was considered in isolation, but which are legal when viewed in
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the context of the original tree, are correctly counted.

a0(T ) =
(
a0(Tl) + a1(Tl) + b0(Tl) + b1(Tl) + e(Tl)

)(
a0(Tr) + a1(Tr) + b0(Tr) + b1(Tr) + e(Tr)

)
− b1(Tl)e(Tr)− e(Tl)b1(Tr),

a1(T ) = a0(Tl)
(
a0(Tr) + a1(Tr) + b0(Tr) + b1(Tr)

)
+

(
a0(Tl) + a1(Tl) + b0(Tl) + b1(Tl)

)
a0(Tr),

b0(T ) = b1(Tl)e(Tr) + e(Tl)b1(Tr),

b1(T ) = a0(Tl)e(Tr) + e(Tl)a0(Tr).

Note that, if T is a single node, a0(T ) evaluates to 1 (corresponding to the empty matching), but a1(T ), b0(T ) and
b1(T ) all evaluate to 0. The reasoning behind the recursion is as follows. We obtain a matching not covering the root in
T by combining an arbitrary matching in Tl (possibly the empty matching if Tl is empty) and an arbitrary matching in
Tr (also possibly empty). If both components are legal, then so is the new matching. It is a special matching counted
by b0 if one of the two branches is empty and the matching chosen in the other branch is a special matching counted
by b1.

Likewise, we obtain a matching covering the root by first choosing one of the root edges, e.g. the edge between the
root of T and the root of Tl. Then we combine it with an arbitrary matching in Tr and a matching not covering the
root of Tl (or vice versa if the other root edge was chosen). For the matching to remain legal, the matching in Tl may
not be of special type b0. A special matching b1 is obtained in this way if one branch is empty.

It is useful to write this recursion in matrix form: associating a vector

V(T ) =
[
a0(T ), a1(T ), b0(T ), b1(T ), e(T )

]T
to a tree T , we have V(T ) = B

(
V(Tl),V(Tr)

)
, where the map B : R5 × R5 → R5 is defined by

B
(

v1
w1

x1

y1
z1

 ,


v2
w2

x2

y2
z2

)
=


(v1 + w1 + x1 + y1 + z1)(v2 + w2 + x2 + y2 + z2)− y1z2 − z1y2

(v1 + w1 + x1 + y1)v2 + v1(v2 + w2 + x2 + y2)
y1z2 + z1y2
v1z2 + z1v2

0

 .

Note that B is a bilinear map: we have

B(v1 +w1,v2 +w2) = B(v1,v2) +B(w1,v2) +B(v1,w2) +B(w1,w2)

and
B(c1v1, c2v2) = c1c2B(v1,v2).

Note also that it has only nonnegative coefficients: the terms y1z2 and z1y2 in the first component actually cancel if
the product is multiplied out. Furthermore, the vector associated with the empty tree is [0, 0, 0, 0, 1]T .

Theorem 7. The maximum number Mn of legal matchings in a tree with n nodes is O(αn) with α = (13384 +
8
√
2793745)1/22 ≈ 1.5895.

Proof. There exists a set S of 62 5-dimensional vectors with nonnegative entries that have the following property:

(1) It contains the vector [0, 0, 0, 0, 1/α]T ,

(2) For any pair of two vectors v1,v2 ∈ S, the vector B(v1,v2) lies in the set

conv≤(S) =
{
w ∈ R5 : w ≥ 0,w ≤

∑
v∈S

cvv for some constants cv ≥ 0,
∑
v∈S

cv = 1
}
.

Here, the inequalities hold componentwise. Note that conv≤(S) is a bounded and convex set by construction. The set
S is listed in Appendix B. It can be verified directly (with the help of a computer) that the second condition is indeed
satisfied. For this purpose, we have provided a comprehensively annotated Mathematica file in the supplementary
material.

Given this property of S, we can now prove the following by induction on n: for every rooted binary tree T with
n nodes, the vector α−n−1V(T ) lies in conv≤(S). This is trivial for n = 0, since we get the vector [0, 0, 0, 0, 1/α]T for
the empty tree, which lies in S by property (1) and thus in turn in conv≤(S). For the induction step, we can apply
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property (2) of S. Assume that the two branches Tl and Tr (possibly empty) of T satisfy the statement, and let them
have k and n− k − 1 nodes respectively. We have

α−n−1V(T ) = α−n−1B(v1,v2) = B(α−k−1v1, α
−n+kv2).

By the induction hypothesis, both α−k−1v1 and α−n+kv2 lie in conv≤(S), so there exist linear combinations of the
elements of S with nonnegative coefficients such that

α−k−1v1 ≤
∑
v∈S

c(1)v v

and
α−n+kv2 ≤

∑
v∈S

c(2)v v,

thus by (bi-)linearity of B

α−n−1V(T ) = B(α−k−1v1, α
−n+kv2)

≤
∑
v∈S

∑
w∈S

c(1)v c(2)w B(v,w).

Since B(v,w) ∈ conv≤(S) for all v and w in S by property (2) and conv≤(S) is convex, it follows that α−n−1V(T ) ∈
conv≤(S), completing the induction.

In particular, we have shown that the entries of the vector α−n−1V(T ) are bounded. The total number of legal
matchings of T is the sum of the entries of V(T ), so it follows that this number is O(αn).

Remark. The set S in our proof was constructed by iteration as described in [23], starting with the two vectors
[0, 0, 0, 0, 1/α]T and [α−7(4 + 6616/

√
2793745), 0, 0, α−7(2 + 3446/

√
2793745), 0]. The choice of the two vectors is jus-

tified as follows: the first vector corresponds to the empty tree; the second stems (as a limit point) from the sequence
of trees that yields the lower bound presented in the appendix. If one was to apply the iteration purely starting with
the first vector, the iteration process would only produce vectors getting arbitrarily close to the second, without ever
terminating.

Now that the upper bound on the number of legal matchings has been proved, all we need is a dynamic programming
algorithm that allows us to enumerate every legal matching. As noted earlier, we take Tc as the tree T . We have a
recursion that allowed us to count all the legal matchings in T . Thus, just like the algorithm in section 3, we use this
to calculate the exact number of legal matchings in Tc and use the recursion to backtrack in Tc to enumerate each
legal matching. Specifically, observe that the terms a0, a1, b0, b1 together sum to the number of legal matchings, and
that each of these terms is itself a summation of terms; note here that the negative terms in a0 actually cancel when
the product is expanded. Hence, it is straightforward to canonically index the legal matchings and to use this to steer
the backtracking.

After that we can transform the matchings back to a corresponding covering convex character fc in T . The states
can then be coloured red-blue in the fashion described earlier, to obtain all possible f2, and we are done. This brings
us to our main theorem:

Theorem 8. For a pair of binary trees T and T ′ on |X| taxa we can compute d2MP in O(α|X| · poly(|X|)) time with
α = (13384 + 8

√
2793745)1/22 ≈ 1.5895.

Proof. Theorem 5 proves that the process of enumerating all covering characters fc on T with at least two taxa per
state will give us a f2 such that d2MP (T, T

′) = |lf2(T ) − lf2(T
′)| = lf2(T

′) − lf2(T ) when T has the lower parsimony
score at optimality. Kelk and Fischer [18] proved that d2MP (T, T

′) is asymmetrical, in the sense that, if we range over
all two-state characters f , the maximum value of lf (T

′)− lf (T ) might differ from the maximum of lf (T )− lf (T
′). This

means we don’t know a priori which of T and T ′ has the lowest parsimony score at optimality. Therefore we simply
enumerate the fc of both trees. This has no impact on the asymptotic runtime.

The process of creating Tc (and in a second iteration, T ′
c) can be achieved in polynomial time. The combination

step in the dynamic programming algorithm - where we use the values of two child nodes to derive the values of the
parent node - can be done in constant time and thus the whole dynamic programming algorithm is clearly polynomial.
A legal matching can be translated to a covering convex character fc in polynomial time. The steps taken for each fc
to create f2 can also be done in polynomial time. Optimal extensions, and thus the parsimony score, can be computed
in polynomial time so each |lf2(T )− lf2(T

′)| is also polynomial-time computable. Theorem 7 proves that there are at
most O(αn) legal matchings in Tc, where in that theorem n refers to the total number of nodes in Tc. Here |X| refers
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to the number of leaves/taxa in T . However, as observed earlier, n = |X| − 2, so the asymptotics do not change in the
translation.

Hence, the dynamic programming algorithm will enumerate at most O(α|X|) natural covering extensions.
Combining everything gives the final runtime O(α|X| · poly(|X|)).

6 Technical discussion: lower bounds, fully legal matchings, and a new
upper bound for matchings on restricted trees

In this section we prove a number of extensions of the upper bound result from the previous section.

6.1 A matching lower bound for legal matchings

First, we show in Lemma 9 in Appendix C that there is a lower bound matching the upper bound in Theorem 7. From
this we conclude that, ranging over trees with n nodes and at most degree 3, the maximum number of legal matchings
is not just O(αn) but in fact Θ(αn), where α = (13384 + 8

√
2793745)1/22 ≈ 1.5895.

The rather complicated structure of the trees that produce the matching lower bound, with a repeating pattern of
length 22, also explains to some extent why a computer-assisted proof, based on the work of Rote [24] and Rosenfeld [23],
was necessary. It seems very difficult, if not impossible, to prove the bound purely by hand.

6.2 A new upper bound on the number of matchings in a restricted subfamily of trees

Next, we translate the upper bound on the number of legal matchings in trees of maximum degree at most 3 to an
upper bound on the number of matchings in good trees, henceforth defined as trees of degree at most 3, where no two
degree 2 nodes are adjacent. To prove this we first need the following lemma.

Lemma 7. For every tree T with maximum degree at most 3, there is a tree T ∗ with the same number of nodes,
maximum degree at most 3 and no two adjacent nodes of degree 2 (i.e. a good tree) that has more or equally many
legal matchings.

Proof. Suppose that v1 and v2 are two adjacent nodes of degree 2 in T , and let their other neighbours be v0 and v3
respectively. Let the edges v0v1, v1v2 and v2v3 be denoted e0, e1, e2 respectively. We remove the edge e0 and replace it
by e′0 = v0v2 to obtain a new tree T ′. Now let Φ map e0 to e′0 and all other edges to themselves. We show that Φ(M)
is a legal matching of T ′ whenever M is a legal matching of T . Note first that the only edges that could be adjacent
in Φ(M) (given that there are no adjacent edges in M) are e′0 and e2. However, if both e0 and e2 are in M , then this
would contradict the assumed legality of M . So Φ(M) is indeed a matching. Next, observe that the legality of M
implies that at most one of e0, e1, e2 are in M , and that in T ′, v1 and v2 no longer have degree 2. Hence, if Φ(M) was
not a legal matching, it could only be due to Φ(M) containing a matching edge incident to v0 or v3. But then M was
itself not legal. Hence, Φ(M) is indeed legal. As Φ is injective, T ′ has at least as many legal matchings as T . Iterating
the construction, we end up with a tree that has no adjacent nodes of degree 2.

Lemma 7 shows that, among trees with n nodes and of maximum degree 3, the number of legal matchings is
maximised by some good tree. Moreover, by construction it follows that every matching in a good tree is a legal
matching. The following result then follows immediately from Theorem 7.

Theorem 9. A tree with n nodes and maximum degree 3, where no two degree 2 nodes are adjacent (i.e. a good tree),
has O(αn) matchings, where α = (13384 + 8

√
2793745)1/22 ≈ 1.5895.

Theorem 9 shows that the absence of adjacent degree 2 nodes is sufficient to slightly improve the well-known upper
bound of O(ϕn) matchings in trees. The lower bound construction given in Lemma 9 in the appendix constructs good
trees that asymptotically attain the bound of Theorem 9, so α cannot be lowered any further for good trees. We note
that for trees where every internal node has degree 3, there are O(1.5538n) matchings (see [2, Theorem 1 and Remark

5]; the precise constant is
√

1 +
√
2)).

6.3 Strengthening legality: full legality

When computing d2MP we could restrict our attention to legal matchings in the core tree Tc, because we showed that
there exists at least one character fc that optimises d2MP , such that fc is induced by a legal matching. The central idea
was that an illegal matching induces a covering convex character f whereby, in its unique optimal extension, an island

16



a

b

c

d

Construct Tc

0 0

1

1

1

1

Figure 9: A red dashed edge represents an edge in the matching. This cannot be a fully legal matching, because in Tc

the island enclosed by the 4 matching edges has total weight 4. Hence, such a matching can safely be ignored when
optimising d2MP .

comprising two taxa is incident to two mutations. By flipping the state assigned by the character to the two taxa, we
could obtain a new covering convex character fc without the island, such that |lfc(T ′)− lfc(T )| ≥ |lf (T ′)− lf (T )|.

We can extend this idea to bigger islands. This requires the introduction of weights to the nodes of Tc. The weight
represents the number of taxa a node is connected to in T . Now, consider a matching M of Tc. Let I be a maximal,
connected subtree of Tc that does not include an edge of M . Suppose the total weight w of I is less than or equal to
the number of edges of M it is incident to. In this case, the state flipping argument described above will go through.
(Specifically, flipping the state saves at least w mutations in the tree with lower parsimony score, but cannot decrease
the parsimony score of the other tree by more than w.) This state flipping could be applied, for example, in the
situation described in Figure 9.

Once all such situations have been excluded, we see that when computing d2MP we can safely restrict our attention
to matchings where every region enclosed between matching edges has total weight strictly larger than the number of
incident matching edges.

The following two definitions formalise this idea.

Definition 5. Let T be a binary phylogenetic tree on X and Tc the core tree of T . Every node of Tc is assigned a
weight that is equal to the number of leaves in T it is adjacent to. Note that the weight of v can also be expressed as
3− deg(v), where deg(v) is the degree of v in Tc.

A matching M of Tc is called k-legal if for every connected component S of Tc − M with at most k vertices, the
total weight of S (i.e., the sum of the weights of all its nodes) is strictly greater than the number of edges in M that
are incident to S.

Note that every matching M of Tc is a 0-legal and 1-legal matching because every component in Tc − M has at
least two vertices. With this new definition we can translate the definition of legal, as used earlier in the article, to
2-legal. The only way for a matching to not be 2-legal is for it to contain a component shown in Figure 4.

Definition 6. A matching M of Tc is called fully legal if it is k-legal for every value of k. In other words, for every
component S of Tc −M , the total weight of S is strictly greater than the number of edges in M that are incident to S.
Note that if M is n-legal with n the number of leaves in X, M is automatically fully legal.

Let S be a component of Tc −M for some matching M , let s = |S| be the number of vertices and m the number of
edges in M incident to S. The sum of the degrees of the vertices in S is 2(s− 1) +m, as edges between vertices of S
are counted twice, and incident edges of M counted once. Thus the total weight of S is 3s− (2(s−1)+m) = s−m+2,
which allows us to reformulate the definition of k-legality as follows:

Lemma 8. A matching M of Tc is k-legal if and only if, for every connected component S of Tc −M with at most k
vertices, the number of vertices s and the number of incident edges m satisfy s > 2m− 2.

Theorem 7 only provides an upper bound on the number of 2-legal matchings. How far can this upper bound be
lowered if we restrict our attention purely to fully legal matchings?

At this stage we only have partial answers. The greater k, the more complex the problem becomes, and the
more auxiliary quantities are required. For 4-legal matchings, one obtains a system of recurrences and in turn a 13-
dimensional bilinear map akin to the map B in the proof of Theorem 7. With the help of a computer - we provide a
detailed Mathematica file in the supplementary material - one can then use the same method to show that the number
of such matchings is O((19/12)n) in trees with n nodes (this bound is, unlike Theorem 7, probably not sharp). Note
here that 19/12 ≈ 1.5834 < α ≈ 1.5895 - thus implying a marginally improved O∗(1.5834n) algorithm for d2MP . It
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follows that the number of fully legal matchings in trees with n nodes is also O((19/12)n). Further improvements to
this bound should be possible by considering larger values of k, but the resulting recursions become quite unwieldy.

Finally, we provide a lower bound. By means of a computer search, one finds that the trees with 15 to 20 nodes
and the greatest number of fully legal matchings look as follows:

Let us therefore consider the sequence of “comb-shaped” trees Ck that consist of a “shaft” (a path on k vertices)
and k “teeth” (paths of length 2 attached to the vertices of the shaft), and let us estimate the number of fully legal
matchings in these trees. The edges of a matching M that belong to the shaft divide the tree Ck into pieces.

Let us count the number of fully legal possibilities for a piece that contains ℓ vertices of the shaft. Assume for now
that it is a piece between two matching edges (i.e., not at one of the ends of the comb). For the first and last tooth,
we only have two possibilities: there can either be no edge of it included in M , or precisely one, which is not incident
to the shaft. For the other teeth, we have three possibilities: no edge, the edge that is incident to the shaft, or the
edge that is not incident to the shaft. Suppose that the first possibility occurs a times, the second b times and the
last c times. We must clearly have a + b + c = ℓ − 2. The components of Ck −M that are single edges do not affect
legality, so we focus on the component that contains part of the shaft. Its total weight is 3a + b + 6, 3a + b + 4, or
3a + b + 2, depending on whether 0, 1 or 2 edges of the first and last tooth are contained in M . On the other hand,
the total number of incident matching edges is b+ c+ 2, b+ c+ 3 or b+ c+ 4 respectively. So the legality condition
becomes 3a+ 4 > c, 3a+ 1 > c or 3a− 2 > c respectively.

Noting that there are
(
ℓ−2
a,b,c

)
ways to distribute the matching edges of M among the different teeth, we eventually

find that the number of possibilities for a piece that contains ℓ vertices of the shaft is

p(ℓ) =
∑

a+b+c=ℓ−2

(
a+ b+ c

a, b, c

)(
[3a+ 4 > c] + 2[3a+ 1 > c] + [3a− 2 > c]

)
,

using Iverson’s notation: [P ] = 1 if P is true, [P ] = 0 otherwise. This only changes slightly for a piece at either of the
two ends, which is only incident to one of the matching edges on the shaft: here, the number becomes

q(ℓ) =
∑

a+b+c=ℓ−1

(
a+ b+ c

a, b, c

)(
[3a+ 3 > c] + [3a > c]

)
.

A fully legal matching of Ck can be obtained by putting together pieces to a sequence: if such a matching contains
h ≥ 1 edges of the shaft, then the total number of possibilities is∑

ℓ1+ℓ2+···+ℓh+1=k
ℓ1,ℓh+1≥1; ℓ2,...,ℓh≥2

q(ℓ1)q(ℓh+1)

h∏
j=2

p(ℓj). (5)

Here, ℓ1, ℓ2, . . . represent the lengths of the different pieces. Define the generating functions P (x) =
∑

j≥2 p(j)x
j and

Q(x) =
∑

j≥1 q(j)x
j . The expression in (5) is precisely the coefficient of xk in Q(x)2P (x)h−1. The total number of

fully legal matchings with at least one edge on the shaft is therefore the coefficient of xk in∑
h≥1

Q(x)2P (x)h−1 =
Q(x)2

1− P (x)
.
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We ignore fully legal matchings without an edge on the shaft for simplicity as their number is comparatively small: it

is trivially O(3k). The asymptotic growth rate of the coefficients of Q(x)2

1−P (x) is governed by its singularity that is closest

to the origin, which is the unique positive real root of the denominator

1− P (x) = 1− 3x2 − 8x3 − 24x4 − · · · ,

see Chapter IV in [12] for details. Letting ρ ≈ 0.2633 be that root, we find that the number of fully legal matchings of
Ck is Θ(ρ−k). Note that Ck has n = 3k vertices. We have thus constructed a sequence of trees for which the number
of fully legal matchings grows as Θ(βn), with β = ρ−1/3 ≈ 1.5603. This provides us with a lower bound on how far
the idea of legal matchings can be used to improve the algorithm further.

7 Conclusions and future work

In this article we have given faster exponential-time algorithms for the unrooted and rooted maximum agreement
forest problems on two binary phylogenetic trees with n taxa. These new algorithms have running times O∗(2.2973n)
and O∗(2.0649n) respectively. We achieved this by running existing fixed parameter tractable (FPT) algorithms up to
the point that the size of a maximum agreement forest becomes too large, and then switching to the enumeration of
convex characters, which project down onto the space of agreement forests. The critical insight here is that the space
of (relevant) convex characters shrinks sharply once the size of a maximum agreement forest becomes too large. We
expect that a similar technique will work in other situations when these ingredients are all present. It is natural to
ask whether the two running times given above can be improved further. In particular, the running time for rooted
maximum agreement forests is now tantalisingly close to O∗(2n); is such a running time achievable?

We have also given an algorithm with running time O∗(1.5895n) for the maximum parsimony distance problem on
two-state characters (d2MP ). To achieve this we established a correspondence between certain convex characters and
specially-constrained matchings on an auxiliary tree structure. Once this was established powerful machinery from
the enumerative combinatorics literature could be applied to carefully count these matchings; moreover, the bounds
are tight. Interestingly, although inspired by phylogenetics, this analysis had the spin-off effect of establishing new,
tight upper bounds on the number of matchings in degree-constrained trees. In terms of future work, we notice that
two-state convex characters can have many distinct optimal extensions, and thus the mapping from two-state convex
characters to general convex characters (via their extensions) is needlessly one-to-many in our analysis; would removing
this redundancy help in any way? Finally, we note that there are as yet no non-trivial non-enumerative algorithms
for computing d2MP . It seems reasonable to believe, given that algorithms with running time O∗(2n) are trivial, that
our running time of O∗(1.5895n) might be achieved without the extensive enumeration deployed in this article. The
problem is (algorithmically) not yet so well-understood, a recent kernelization result notwithstanding [8].
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Appendix A: Fitch’s algorithm

Fitch’s algorithm [11], which computes lf (T ) and a corresponding optimal extension g of f to T , has two phases. In
the first phase, known as the bottom-up phase, we start by assigning to each taxon a subset of states consisting of only
the state it is assigned by f . The internal nodes of T are assigned subsets of states recursively, as follows. Suppose
a node p has two children u and v, and the bottom-up phase has already assigned subsets F (u) and F (v) to the two
children, respectively. If F (u) ∩ F (v) ̸= ∅ then set F (p) = F (u) ∩ F (v) (in which case we say that p is an intersection
node). If F (u) ∩ F (v) = ∅ then set F (p) = F (u) ∪ F (v) (in which case we say that p is a union node). The number
of union nodes in the bottom-up phase is equal to lf (T ). To actually create an optimal extension g of f to T , we
require the top-down phase of Fitch’s algorithm. Start at the root r and let g(r) be an arbitrary element in F (r). For
an internal node u with parent p, we set g(u) = g(p) (if g(p) ∈ F (u)) and otherwise (i.e. g(p) ̸∈ F (u)) set g(u) to be
an arbitrary element of F (u). Note that the arbitrary choices in the top-down phase can be used to generate multiple
distinct optimal extensions.
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Appendix B

The vectors of the set S, with R = 2793745:

v1 = α−2[1, 0, 0, 0, 0]T ,

v2 = α−6
[
2 +

3446√
R

, 2 +
3170√

R
, 0, 0, 0

]T
,

v3 = α−6[4, 4, 0, 0, 0]T ,

v4 = α−21
[
2016 +

3380832√
R

, 2208 +
3671904√

R
, 0, 0, 0

]T
,

v5 = α−21[4032, 4416, 0, 0, 0]T ,

v6 = α−21
[
2016 +

3367584√
R

, 2208 +
3693984√

R
, 0, 0, 0

]T
,

v7 = α−21
[5628705696

R
+

3367584√
R

,
6174294432

R
+

3693984√
R

, 0, 0, 0
]T

,

v8 = α−14
[1969470208

9R
+

3291861361024

9R3/2
,
2179611976

9R
+

3643134552760

9R3/2
, 0, 0, 0

]T
,

v9 = α−10
[
12 +

20676√
R

, 14 +
22466√

R
, 0, 0, 0

]T
,

v10 = α−3
[143768593

108R
+

85015

108
√
R
,
105898423

72R
+

66145

72
√
R
, 0, 0, 0

]T
,

v11 = α−3
[
− 1625

108
+

2887105

108
√
R

,
1715

72
− 2737003

72
√
R

, 0, 0, 0
]T

,

v12 = α−3
[108745

108
− 65

√
R

108
,
28441

24
− 17

√
R

24
, 0, 0, 0

]T
,

v13 = α−3
[1
2
+

1447

2
√
R
,
1

2
+

1999

2
√
R
, 0, 0, 0

]T
,

v14 = α−14
[201818664

R
+

120744√
R

,
267240144

R
+

159888√
R

, 0, 0, 0
]T

,

v15 = α−14
[
72 +

120744√
R

, 96 +
159888√

R
, 0, 0, 0

]T
,

v16 = α−14[144, 192, 0, 0, 0]T ,

v17 = α−7
[31
18

+
116617

18
√
R

,
281

54
+

208991

54
√
R

, 0, 0, 0
]T

,

v18 = α−7
[108745

18
− 65

√
R

18
,
219163

27
− 131

√
R

27
, 0, 0, 0

]T
,

v19 =
[8142156817

23328R
+

3615127

23328
√
R
,
2689931479

11664R
+

4131265

11664
√
R
, 0, 0, 0

]T
,

v20 =
[
− 2104505

23328
+

3526059745

23328
√
R

,
2807237

23328
− 4680672973

23328
√
R

, 0, 0, 0
]T

,

v21 =
[11814523825

23328
− 7068425

√
R

23328
,
1999380955

2916
− 1196195

√
R

2916
, 0, 0, 0

]T
,

v22 =
[7345
432

− 12119705

432
√
R

,−6197

288
+

10499773

288
√
R

, 0, 0, 0
]T

,

v23 =
[2443777

8R
+

1447

8
√
R
,
3242521

8R
+

1999

8
√
R
, 0, 0, 0

]T
,
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v24 =
[32805161

108R
+

54881040239

108R3/2
,
29641217

72R
+

49498725911

72R3/2
, 0, 0, 0

]T
,

v25 =
[1237818669070513

1458R2
+

740509100311

1458R3/2
,
838121265457801

729R2
+

501401051935

729R3/2
, 0, 0, 0

]T
,

v26 = α−15
[71754261114955960

81R2
+

119933657317951854472

81R5/2
,

291727305240092752

243R2
+

487607592266798252080

243R5/2
, 0, 0, 0

]T
,

v27 = α−8
[140725263328052732114393

1458R3
+

84193524123331244303

1458R5/2
,

286283955528410226595427

2187R3
+

171278806193160289301

2187R5/2
, 0, 0, 0

]T
,

v28 = α−4
[10512907255001141

1944R2
+

6289683368723

1944R3/2
,
10709134162880129

1458R2
+

6407069939495

1458R3/2
, 0, 0, 0

]T
,

v29 =
[794956577

2592R
+

464135

2592
√
R
,
524137043

1296R
+

325541

1296
√
R
, 0, 0, 0

]T
,

v30 = α−15
[17072730067

54R
+

28535661518197

54R3/2
,
3873220609

9R
+

6473856199063

9R3/2
, 0, 0, 0

]T
,

v31 = α−8
[803579524335268753

23328R2
+

480751987830295

23328R3/2
,

547329217239002015

11664R2
+

327434508313145

11664R3/2
, 0, 0, 0

]T
,

v32 = α−8
[293738136445

23328R
+

470526609087163

23328R3/2
,
197305889945

11664R
+

325111894094399

11664R3/2
, 0, 0, 0

]T
,

v33 = α−8
[8133848923273

23328R
− 4522191905

23328
√
R

,−7653084333757

11664R
+

4813128245

11664
√
R

, 0, 0, 0
]T

,

v34 = α−2
[34964309

54R
+

21179

54
√
R
,
29330411

27R
+

17753

27
√
R
, 0, 0, 0

]T
,

v35 = α−17
[2039517464

3R
+

3408952424936

3R3/2
,
10267634576

9R
+

17161853188592

9R3/2
, 0, 0, 0

]T
,

v36 = α−13
[
38 +

63818√
R

, 64 +
106960√

R
, 0, 0, 0

]T
,

v37 = α−6
[892769641

216R
+

538495

216
√
R
,
62416754

9R
+

37790

9
√
R

, 0, 0, 0
]T

,

v38 = α−6
[
− 1355

216
+

3337411

216
√
R

,
5

2
+

8339

2
√
R
, 0, 0, 0

]T
,

v39 = α−4[1, 2, 0, 0, 0]T ,

v40 = α−4
[1895
216

− 2436799

216
√
R

, 0, 0,−1625

108
+

2887105

108
√
R

, 0
]T

,

v41 = α−4
[605232455

216R
+

368465

216
√
R
, 0, 0,

143768593

108R
+

85015

108
√
R
, 0
]T

,

v42 = α−11
[
26 +

43142√
R

, 0, 0, 12 +
20676√

R
, 0
]T

,

v43 = α−15
[4149082184

9R
+

6934995913784

9R3/2
, 0, 0,

1969470208

9R
+

3291861361024

9R3/2
, 0
]T

,

v44 =
[23696513

54R
+

14327

54
√
R
, 0, 0,

1877966

9R
+

1142

9
√
R
, 0
]T

,

v45 =
[1
8
+

2551

8
√
R
, 0, 0,

1

8
+

343

8
√
R
, 0
]T

,
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v46 =
[18403

54
− 11

√
R

54
, 0, 0,

11711

72
− 7

√
R

72
, 0
]T

,

v47 =
[ 73

216
− 8081

216
√
R
, 0, 0,− 7

36
+

20783

36
√
R
, 0
]T

,

v48 = α−7[8, 0, 0, 4, 0]T ,

v49 = α−7
[
4 +

6616√
R

, 0, 0, 2 +
3446√

R
, 0
]T

,

v50 = α−3[1, 0, 0, 1, 0]T ,

v51 = α−5
[1895
216

− 2436799

216
√
R

, 0,−1625

108
+

2887105

108
√
R

,
1895

216
− 2436799

216
√
R

, 0
]T

,

v52 = α−5
[605232455

216R
+

368465

216
√
R
, 0,

143768593

108R
+

85015

108
√
R
,
605232455

216R
+

368465

216
√
R
, 0
]T

,

v53 = α−12
[
26 +

43142√
R

, 0, 12 +
20676√

R
, 26 +

43142√
R

, 0
]T

,

v54 = α−16
[4149082184

9R
+

6934995913784

9R3/2
, 0,

1969470208

9R
+

3291861361024

9R3/2
,

4149082184

9R
+

6934995913784

9R3/2
, 0
]T

,

v55 = α−1
[23696513

54R
+

14327

54
√
R
, 0,

1877966

9R
+

1142

9
√
R
,
23696513

54R
+

14327

54
√
R
, 0
]T

,

v56 = α−1
[1
8
+

2551

8
√
R
, 0,

1

8
+

343

8
√
R
,
1

8
+

2551

8
√
R
, 0
]T

,

v57 = α−1
[18403

54
− 11

√
R

54
, 0,

11711

72
− 7

√
R

72
,
18403

54
− 11

√
R

54
, 0
]T

v58 = α−1
[ 73

216
− 8081

216
√
R
, 0,− 7

36
+

20783

36
√
R
,
73

216
− 8081

216
√
R
, 0
]T

,

v59 = α−8[8, 0, 4, 8, 0]T ,

v60 = α−8
[
4 +

6616√
R

, 0, 2 +
3446√

R
, 4 +

6616√
R

, 0
]T

,

v61 = α−4[1, 0, 1, 1, 0]T ,

v62 = α−1[0, 0, 0, 0, 1]T .

The set S, consisting of vectors [v, w, x, y, z]T , can be split into 4 groups:

1. Vectors 1 to 39 have x = y = z = 0 and the rest is positive.

2. Vectors 40 to 50 have w = x = z = 0 and the rest is positive.

3. Vectors 51 to 61 have w = z = 0 and v = y and the rest is positive.

4. Vector 62 has v = w = x = y = 0 and z > 0.

Now, if we look at B(a, b) we can observe that we can split the image into 4 groups. When we say “combine” two
vectors a and b we mean look at the result of B(a, b).

i Vector combinations from every group except vector 62 will result in a vector that has x = y = z = 0. This is
because z = 0 in all the vectors we combine.

ii Combining vector 62 with group 1 above will result in a vector that has w = x = z = 0.

iii Combining vector 62 with group 2 above will result in a vector that has w = z = 0 and v = y and the rest is
positive.

iv Combining vector 62 with group 3 above will result in a vector that has w = z = 0 and x = y and the rest is
positive.
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These observations will make checking that S has the desired property much easier; we provide further details in
the supplementary Mathematica files: https://github.com/skelk2001/legal-matchings

Appendix C

Let Mn denote the maximum number of legal matchings in a tree with n nodes. In the following, we determine a lower
bound on the rate of growth of Mn. Recall that a good tree is a tree with maximum degree 3, where no two degree 2
nodes are adjacent.

Lemma 9. Mn = Ω(αn) with α = (13384 + 8
√
2793745)1/22 ≈ 1.5895. This lower bound is achieved on good trees.

Proof. We provide an explicit construction. To this end, let us introduce some notation. For a rooted tree T with root
r, let z(T ) be the total number of matchings of T and z0(T ) the number of matchings where the root is not covered
(i.e., the root is not an end of one of the matching edges).

Now let us construct a sequence of rooted trees Tk with a repeating pattern of length 22. The starting point can
be any good rooted tree T0; then all further trees in the sequence are good trees as well.

· · ·
rkrk+1

Tk

Tk+1

Figure 10: Construction of a sequence of trees with many legal matchings.

The tree Tk+1 is constructed by attaching a piece of 22 nodes (and 22 edges) to the root of Tk and assigning a new
root rk+1 as indicated in Figure 10. Now we can determine a recursion for z(Tk+1) and z0(Tk+1) in terms of z(Tk) and
z0(Tk). There are 10144 matchings of the 22 new edges that cover rk, and 19888 matchings that do not cover it. The
former can be extended with any matching of Tk that does not cover rk, the latter with an arbitrary matching of Tk.
Hence we have

z(Tk+1) = 19888z(Tk) + 10144z0(Tk).

Likewise, considering only matchings that leave rk+1 uncovered, we obtain

z0(Tk+1) = 13456z(Tk) + 6880z0(Tk).

Hence we have [
z(Tk)
z0(Tk)

]
=

[
19888 10144
13456 6880

]k [
z(T0)
z0(T0)

]
.

Since the eigenvalues of the 2 × 2-matrix are 13384 ± 8
√
2793745, it follows that z(Tk) = Θ

(
(13384 + 8

√
2793745)k

)
.

Note that Tk has n = 22k +O(1) nodes, and that we can cover all possible congruence classes modulo 22 by choosing
T0 accordingly. Hence we have Mn = Ω(αn) with α = (13384 + 8

√
2793745)1/22 ≈ 1.5895.
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