Online seminar on Algorithms and Complexity in Phylogenetics

Sharp upper and lower bounds on a restricted class of convex characters -- and algorithmic applications!

Steven Kelk

Department of Advanced Computing Sciences (DACS) Maastricht University, Netherlands

Based on joint work with Ruben Meuwese (DACS)

In: Electronic Journal of Combinatorics 29(1) (2022)

• Phylogenetic trees summarise the evolution of a set of species X.

- Let T be an unrooted (binary) phylogenetic tree on X.
- A *character f* is simply a partition of *X*.
- The blocks of *f* are called states.

• A character is *convex* on *T*, if the spanning trees induced by the states – one spanning tree per state - are vertex disjoint in *T*.

Convex character { {1,8,4}, {3}, {9,2,7,5}, {0}, {6} } on *T* - spanning trees are disjoint!

<u>Non</u>-convex character { {1,8,4,0}, {3}, {9,2,7,5}, {6} } on *T* - spanning trees are <u>not</u> disjoint

How many convex characters can a tree have?

What we already knew (K. & Stamoulis 2017, based on Steel 1992):

• The number of convex characters on an unrooted binary tree T with n leaves is independent of the topology of T, and is equal to the (2n-1)th Fibonacci number. This is equal to:

$$\left\lfloor \frac{\phi^{2n-1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \Theta(1.681^{2n}) = \Theta(2.681^{n})$$

What we already knew (K. & Stamoulis 2017):

• What about convex characters where each state contains at least 2 elements of X (i.e. singleton states are not allowed)?

• Let us denote the number of such characters $g_2(T)$, and define $g_k(T)$ similarly.

• Note that $g_1(T)$ is just the set of all convex characters.

This is **not** a valid g_2 character, because of the states $\{0\}$, $\{3\}$ and $\{6\}$.

This **is** a valid g_2 character: {1,4,8}, {5,7}, {2,3,9}, {0,6}

What we already knew (K. & Stamoulis 2017):

• The number of g_2 convex characters on an unrooted binary tree T with n leaves is independent of the topology of T, and is equal to the (n-1)th Fibonacci number. This is equal to:

$$g_2(n) = \left\lfloor \frac{\phi^{n-1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \Theta(1.681^n)$$

What we already knew (K. & Stamoulis 2017):

• The number of g_2 convex characters on an unrooted binary tree T with n leaves is independent of the topology of T, and is equal to the (n-1)th Fibonacci number. This is equal to:

$$g_2(n) = \left\lfloor \frac{\phi^{n-1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor = \Theta(1.681^n)$$

- However, g_3 is topology dependent \otimes
- This raised the following question. For each $k \ge 3$,
 - What is the maximum value that g_k can attain on *n* leaves?
 - What is the minimum value that g_k can attain on *n* leaves?

Our new results (1): the maximum

• Let Cat_n be the unrooted caterpillar topology on *n* leaves. (Note that the actual leaf labels are not important in this work).

Figure 2: A caterpillar tree on 9 taxa.

Our new results (1): the maximum

• Let Cat_n be the unrooted caterpillar topology on *n* leaves. (Note that the actual leaf labels are not important in this work).

Figure 2: A caterpillar tree on 9 taxa.

Corollary 7. For every n, the maximum value of g_k ranging over all trees on n taxa is $g_k(Cat_n)$, which is $\Theta(\alpha^n)$, where α is the positive real root of the characteristic polynomial $x^k - x^{k-1} - 1$.

Our new results (1): the maximum

• Let Cat_n be the unrooted caterpillar topology on *n* leaves. (Note that the actual leaf labels are not important in this work).

Figure 2: A caterpillar tree on 9 taxa.

Corollary 7. For every n, the maximum value of g_k ranging over all trees on n taxa is $g_k(Cat_n)$, which is $\Theta(\alpha^n)$, where α is the positive real root of the characteristic polynomial $x^k - x^{k-1} - 1$.

• I will explain later where this comes from.

Our new results (2): the minimum

Theorem 14. Let $n \ge k$. Every fully k-loaded tree \mathcal{T} on n taxa is a minimizer for g_k .

Corollary 15. For $n \ge k \ge 2$, the minimum value of g_k ranging over all trees on n taxa is exactly

$$\left\lfloor \frac{\phi^{\left\lceil \frac{n}{k-1} \right\rceil - 1}}{\sqrt{5}} + \frac{1}{2} \right\rfloor$$

 A fully k-loaded tree is a tree where the taxa can be partitioned into pendant subtrees, such that all pendant subtrees have exactly k-1 taxa, except perhaps one, which will have at most k-1 taxa (the "residue" subtree).

• More about this later, too. Let's first discuss algorithmic significance.

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 1: Each entry α indicates that the minimum (respectively, maximum) value of $g_k(\mathcal{T})$, ranging over all trees on n taxa, grows at the rate $\Theta(\alpha^n)$.

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 1: Each entry α indicates that the minimum (respectively, maximum) value of $g_k(\mathcal{T})$, ranging over all trees on n taxa, grows at the rate $\Theta(\alpha^n)$.

- From the results of K. & Stamoulis (2017) we can efficiently count, list and uniformly sample these characters.
- So you can loop through all g_k characters in time $\Theta(g_k(T) \cdot poly(n))$ and the constants hidden by the Θ notation are small.

	c	aterpi	llar	random trees		
	1s	10s	100s	1s	10s	100s
g_1	14	16	19	14	16	19
g_2	27	32	37	27	32	37
g_3	34	41	47	38	49	55
g_4	40	48	56	56	66	74
g_5	47	56	64	73	84	96
g_6	$\overline{52}$	63	72	83	101	116

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

- From the results of K. & Stamoulis (2017) we can efficiently count, list and uniformly sample these characters.
- So you can loop through all g_k characters in time $\Theta(g_k(T) \cdot poly(n))$ and the constants hidden by the Θ notation are small.

	c	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s	
g_1	14	16	19	14	16	19	
g_2	27	32	37	27	32	37	
g_3	34	41	47	38	49	55	
g_4	40	48	56	56	66	74	
g_5	47	56	64	73	84	96	
g_6	$\overline{52}$	63	72	83	101	116	

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

- By the standards of exponential-time algorithms, this scales quite well.
- So what?

	c	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s	
g_1	14	16	19	14	16	19	
g_2	27	32	37	27	32	37	
g_3	34	41	47	38	49	55	
g_4	40	48	56	56	66	74	
g_5	47	56	64	73	84	96	
g_6	52	63	72	83	101	116	

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• For a number of (NP-hard) phylogenetic optimization problems, an optimal solution can be projected onto some convex character.

• If you find that convex character, you can map backwards to find the original optimal solution \rightarrow rapid prototyping of algorithms simply by looping through convex characters. Some examples:

	c	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s	
g_1	14	16	19	14	16	19	
g_2	27	32	37	27	32	37	
g_3	34	41	47	38	49	55	
g_4	40	48	56	56	66	74	
g_5	47	56	64	73	84	96	
g_6	52	63	72	83	101	116	

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given a set of trees on the same taxa *X*, can you partition *X* into size-4 subsets such that in each tree the induced quartets are disjoint?

• I don't actually know whether this is NP-hard or not. Probably it is. But in any case I can build an algorithm by looping through all g_4 characters in one of the trees and checking whether any of them gives a valid solution.

	c	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s	
g_1	14	16	19	14	16	19	
g_2	27	32	37	27	32	37	
g_3	34	41	47	38	49	55	
g_4	40	48	56	56	66	74	
g_5	47	56	64	73	84	96	
g_6	52	63	72	83	101	116	

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given a set of trees on the same taxa *X*, can you partition *X* into size-4 subsets such that in each tree the induced quartets are disjoint?

• I don't actually know whether this is NP-hard or not. Probably it is. But in any case I can build an algorithm by looping through all g_4 characters in one of the trees and checking whether any of them gives a valid solution.

		caterpillar			random trees		
		1s	10s	100s	1s	10s	100s
g_{1}	1	14	16	19	14	16	19
g_2	2	27	32	37	27	32	37
$g_{:}$	3	34	41	47	38	49	55
g_{4}	4	40	48	56	56	66	74
$g_{!}$	5	$\overline{47}$	$\overline{56}$	$\overline{64}$	$\overline{73}$	84	96
g_{0}	6	52	63	72	83	101	116

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given a set of trees on the same taxa *X*, can you partition *X* into size-4 subsets such that in each tree the induced quartets are disjoint?

• Can easily be generalised to "and the quartets have the same topology", "such that in at least one of trees the quartets are disjoint" and so on.

	c	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s	
g_1	14	16	19	14	16	19	
g_2	27	32	37	27	32	37	
g_3	34	41	47	38	49	55	
g_4	40	48	56	56	66	74	
g_5	47	$\overline{56}$	64	73	84	96	
g_6	52	63	72	83	101	116	

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given two trees on the same set of taxa, can you find character that maximizes the absolute difference in parsimony scores of that character on the two trees?

	c	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s	
g_1	14	16	19	14	16	19	
g_2	27	32	37	27	32	37	
g_3	34	41	47	38	49	55	
g_4	40	48	$\overline{56}$	56	66	$\overline{74}$	
g_5	47	56	64	73	84	96	
g_6	52	63	72	83	101	116	

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

- Q: Given two trees on the same set of taxa, can you find character that maximizes the absolute difference in parsimony scores of that character on the two trees?
- It can be proven that g_2 contains such an optimal character!

	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s
g_1	14	16	19	14	16	19
g_2	27	32	37	27	32	37
g_3	34	41	47	38	49	55
g_4	40	48	56	56	66	74
g_5	47	56	64	73	84	96
g_6	52	63	72	83	101	116

ſ		minimum	maximum
	g_1	2.618	2.618
	g_2	1.618	1.618
	g_3	1.272	1.466
ſ	g_4	1.174	1.380
	g_5	1.128	1.325
	g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given two trees on the same set of taxa, can you find character that maximizes the absolute difference in parsimony scores of that character on the two trees?

• It can be proven that g_2 contains such an optimal character! Both listing and (especially) uniformly sampling work surprisingly well.

	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s
g_1	14	16	19	14	16	19
g_2	27	32	37	27	32	37
g_3	34	41	47	38	49	55
g_4	40	48	56	56	66	74
g_5	47	56	64	73	84	96
g_6	52	63	72	83	101	116

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given two trees on the same set of taxa, can you find character that maximizes the absolute difference in parsimony scores of that character on the two trees?

• This has been leveraged to produce very strong lower bounds on the TBR distance between large trees (Wersch, K., Linz and Stamoulis 2022).

	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s
g_1	14	16	19	14	16	19
g_2	27	32	37	27	32	37
g_3	34	41	47	38	49	55
g_4	40	48	56	56	66	74
g_5	47	56	64	73	84	96
g_6	52	63	72	83	101	116

		minimum	maximum
Ì	g_1	2.618	2.618
	g_2	1.618	1.618
	g_3	1.272	1.466
	g_4	1.174	1.380
ĺ	g_5	1.128	1.325
	g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given a set of trees, find me a *maximum agreement forest* of the trees in which each component has at least *k* taxa.

• Agreement forests are convex characters in which, for each state, all trees induce the same topology on that state.

	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s
g_1	14	16	19	14	16	19
g_2	27	32	37	27	32	37
g_3	34	41	47	38	49	55
g_4	40	48	56	56	66	74
g_5	47	56	64	73	84	96
g_6	52	63	72	83	101	116

		minimum	maximum
Ì	g_1	2.618	2.618
	g_2	1.618	1.618
	g_3	1.272	1.466
	g_4	1.174	1.380
ĺ	g_5	1.128	1.325
	g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Q: Given a set of trees, find me a *maximum agreement forest* of the trees in which each component has at least *k* taxa.

• Loop through all g_k characters one of the trees. Can be easily generalized. Yields an easy O(2.618ⁿ) algorithm for the classical problem (k=1).

	caterpillar			random trees		
	1s	10s	100s	1s	10s	100s
g_1	14	16	19	14	16	19
g_2	27	32	37	27	32	37
g_3	34	41	47	38	49	55
g_4	40	48	56	56	66	74
g_5	47	56	64	73	84	96
g_6	52	63	72	83	101	116

	minimum	maximum
g_1	2.618	2.618
g_2	1.618	1.618
g_3	1.272	1.466
g_4	1.174	1.380
g_5	1.128	1.325
g_6	1.101	1.285

Table 2: The numbers in row g_k indicate the largest n for which, on caterpillar (respectively, random) trees with n taxa, all g_k characters could be listed within $\{1, 10, 100\}$ seconds.

• Use your imagination \bigcirc The code for counting / listing / sampling g_k characters can be downloaded from my website <u>http://skelk.sdf-eu.org</u>.

Proof sketches

Proof sketches: 1. That caterpillars maximize g_k An easy (but very useful) recurrence for computing $g_k(T)$

An easy (but very useful) recurrence for computing $g_k(T)$

Exactly k taxa

=

Figure 2: A caterpillar tree on 9 taxa.

 $g_k(Cat_n) = g_k(Cat_{n-1}) + g_k(Cat_{n-k})$

 $g_k(Cat_n) = g_k(Cat_{n-1}) + g_k(Cat_{n-k})$

Homogenous linear recurrence (easy to solve!)

=

 $g_k(Cat_n) = g_k(Cat_{n-1}) + g_k(Cat_{n-k})$

Figure 2: A caterpillar tree on 9 taxa.

Exactly k taxa

=

But why are caterpillars maximizers?

 $g_k(Cat_n) = g_k(Cat_{n-1}) + g_k(Cat_{n-k})$

Another easy observation: linearization of small subtrees cannot cause g_k to decrease

At most k-1 taxa

Another easy observation: linearization of small subtrees cannot cause g_k to decrease

Proof by induction on (#taxa + #cherries) that caterpillars maximize

At most k-1 taxa

- Let T be an arbitrary maximizer of $g_k(T)$.
- If such a tripartition exists where |A|, $|B| \ge 2$, linearize to get a new tree T'.
- We have $g_k(T) \leq g_k(T')$.
- T' has fewer cherries than T.
- So by induction $g_k(T) \leq g_k(T') \leq g_k(Cat_n)$.
- Done!

Proof by induction on (#taxa + #cherries) that caterpillars maximize

At most k-1 taxa

• Let T be an arbitrary maximizer of $g_k(T)$.

•If such a tripartition does not exist where |A|, $|B| \ge 2$ and $2 \le |C| \le k-1$, we can show that T must have a split D|E where |D|=k (I won't prove this today).

- So $g_k(T) = g_k(T \setminus \{x\}) + g_k(T \setminus D)$ where x is an arbitrary taxon in D.
- Both terms of the summation have smaller (#taxa + #cherries).

• So
$$g_k(T) \le g_k(Cat_{n-1}) + g_k(Cat_{n-k})$$

= $g_k(Cat_n)$

Proof by induction on (#taxa + #cherries) that caterpillars maximize

At most k-1 taxa

• Let T be an arbitrary maximizer of $g_k(T)$.

•If such a tripartition does not exist where |A|, $|B| \ge 2$ and $2 \le |C| \le k-1$, we can show that T must have a split D|E where |D|=k (I won't prove this today).

- So $g_k(T) = g_k(T \setminus \{x\}) + g_k(T \setminus D)$ where x is an arbitrary taxon in D.
- Both terms of the summation have smaller (#taxa + #cherries).

• So
$$g_k(T) \le g_k(Cat_{n-1}) + g_k(Cat_{n-k})$$

= $g_k(Cat_n)$ DONE!

Proof sketches: 2. That fully k-loaded trees minimize g_k

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant subtrees, such that all pendant subtrees have exactly k-1 taxa, except perhaps one, which will have at most k-1 taxa (the "residue" subtree).

fully 4-loaded tree

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant subtrees, such that all pendant subtrees have exactly k-1 taxa, except perhaps one, which will have at most k-1 taxa (the "residue" subtree).

fully 4-loaded tree

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant subtrees, such that all pendant subtrees have exactly k-1 taxa, except perhaps one, which will have at most k-1 taxa (the "residue" subtree).

fully 4-loaded tree

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k:

- Let T be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) = g_k(A+B) g_k(C) + g_k(A) g_k(B+C) + g_k(A+B) g_k(B+C)$
- Note that |A|, |C|, |A+B|, |B+C| all have fewer than *n* leaves

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) = g_k(A+B) g_k(C) + g_k(A) g_k(B+C) + g_k(A+B) g_k(B+C)$
- So by induction the terms g_k(A+B), g_k(C), g_k(A), g_k(B+C) are all larger than or equal to the g_k values for corresponding fully k-loaded trees

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

• $g_k(T) \ge g_k^{fl}(|A|+|B|) g_k^{fl}(|C|) + g_k^{fl}(|A|) g_k^{fl}(|B+C|) + g_k^{fl}(|A+B|) g_k^{fl}(|B+C|)$

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) \ge g_k^{fl}(|A|+|B|) g_k^{fl}(|C|) + g_k^{fl}(|A|) g_k^{fl}(|B+C|) + g_k^{fl}(|A+B|) g_k^{fl}(|B+C|)$
- If we can show that there exists a fully k-loaded tree whose $g_k(T)$ value is equal to the RHS of the above inequality, we are done.

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) \ge g_k^{fl}(|A|+|B|) g_k^{fl}(|C|) + g_k^{fl}(|A|) g_k^{fl}(|B+C|) + g_k^{fl}(|A+B|) g_k^{fl}(|B+C|)$
- Easier case: If |A| or |C| is divisible by k-1. We replace subtree A with a fully k-loaded tree. This yields a fully k-loaded tree overall, because there is at most one residue subtree. Done!

- Let T be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) \ge g_k^{fl}(|A|+|B|) g_k^{fl}(|C|) + g_k^{fl}(|A|) g_k^{fl}(|B+C|) + g_k^{fl}(|A+B|) g_k^{fl}(|B+C|)$
- Harder case: Neither |A| or |C| is divisible by k-1. Problem is that replacing A might leave us with two residue subtrees, and this is not allowed ☺

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) \ge g_k^{fl}(|A|+|B|) g_k^{fl}(|C|) + g_k^{fl}(|A|) g_k^{fl}(|B+C|) + g_k^{fl}(|A+B|) g_k^{fl}(|B+C|)$
- Harder case: Neither |A| or |C| is divisible by k-1. Problem is that replacing A might leave us with two residue subtrees, and this is not allowed ⁽³⁾ Requires (tricky!) application of induction *twice.*

- Let *T* be an arbitrary minimizer of g_k .
- With a bit of manipulation we can manipulate T so it looks like this, without increasing g_k :

- $g_k(T) \ge g_k^{fl}(|A|+|B|) g_k^{fl}(|C|) + g_k^{fl}(|A|) g_k^{fl}(|B+C|) + g_k^{fl}(|A+B|) g_k^{fl}(|B+C|)$
- Harder case: Neither |A| or |C| is divisible by k-1. Problem is that replacing A might leave us with two residue subtrees, and this is not allowed ⁽³⁾ Requires (tricky!) application of induction *twice*. Done ⁽³⁾

Conclusions / reflections

• Convex character programming – try it ⁽²⁾ Happy to discuss possible applications.

• How do g_k values vary between the lower and upper bounds? Can we parameterize this somehow as a function of tree topology?

• How do g_k values change under the action of common tree rearrangement operations?

• What does the vector of g_k values tell us about a tree? We know examples of non-isomorphic trees that have identical g_k values. Can we characterize when this happens?

• Are there other natural restrictions of convex characters on trees that we could study (in order to further extend the modelling power of convex character programming?) Ideally allowing efficient counting/listing/sampling!

• Networks...?

Thank you for listening!