
Sharp upper and lower bounds on a

restricted class of convex characters --

and algorithmic applications!

Steven Kelk

Department of Advanced Computing Sciences (DACS)
Maastricht University, Netherlands

Based on joint work with Ruben Meuwese (DACS)

In: Electronic Journal of Combinatorics 29(1) (2022)

Online seminar on Algorithms and Complexity in Phylogenetics

• Phylogenetic trees summarise the evolution of a set of species X.

• Let T be an unrooted (binary) phylogenetic tree on X.

• A character f is simply a partition of X.

• The blocks of f are called states.

• A character is convex on T, if the spanning trees induced by the states –

one spanning tree per state - are vertex disjoint in T.

Convex character { {1,8,4}, {3}, {9,2,7,5}, {0}, {6} } on T

- spanning trees are disjoint!

T

Non-convex character { {1,8,4,0}, {3}, {9,2,7,5}, {6} } on T

- spanning trees are not disjoint

T

How many convex characters can a tree have?

T

What we already knew (K. & Stamoulis 2017, based on Steel 1992):

• The number of convex characters on an unrooted binary tree T with n

leaves is independent of the topology of T, and is equal to the (2n-1)th

Fibonacci number. This is equal to:

= ϴ(1.6812n) = ϴ(2.681n)

What we already knew (K. & Stamoulis 2017):

• What about convex characters where each state contains at least 2

elements of X (i.e. singleton states are not allowed)?

• Let us denote the number of such characters g2(T), and define gk(T)

similarly.

• Note that g1(T) is just the set of all convex characters.

This is not a valid g2 character, because of the

states {0}, {3} and {6}.

T

This is a valid g2 character:

{1,4,8}, {5,7}, {2,3,9}, {0,6}

T

What we already knew (K. & Stamoulis 2017):

• The number of g2 convex characters on an unrooted binary tree T with n

leaves is independent of the topology of T, and is equal to the (n-1)th

Fibonacci number. This is equal to:

= ϴ(1.681n)

What we already knew (K. & Stamoulis 2017):

• The number of g2 convex characters on an unrooted binary tree T with n

leaves is independent of the topology of T, and is equal to the (n-1)th

Fibonacci number. This is equal to:

• However, g3 is topology dependent

• This raised the following question. For each k ≥ 3,

• What is the maximum value that gk can attain on n leaves?

• What is the minimum value that gk can attain on n leaves?

= ϴ(1.681n)

Our new results (1): the maximum

• Let Catn be the unrooted caterpillar topology on n leaves. (Note that the

actual leaf labels are not important in this work).

Our new results (1): the maximum

• Let Catn be the unrooted caterpillar topology on n leaves. (Note that the

actual leaf labels are not important in this work).

Our new results (1): the maximum

• Let Catn be the unrooted caterpillar topology on n leaves. (Note that the

actual leaf labels are not important in this work).

• I will explain later where this comes from.

Our new results (2): the minimum

• A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

• More about this later, too. Let’s first discuss algorithmic significance.

Algorithmic significance:

Algorithmic significance:

• From the results of K. & Stamoulis (2017) we can efficiently count, list and

uniformly sample these characters.

• So you can loop through all gk characters in time ϴ(gk(T) • poly(n)) – and

the constants hidden by the ϴ notation are small.

Algorithmic significance:

• From the results of K. & Stamoulis (2017) we can efficiently count, list and

uniformly sample these characters.

• So you can loop through all gk characters in time ϴ(gk(T) • poly(n)) – and

the constants hidden by the ϴ notation are small.

Algorithmic significance:

• By the standards of exponential-time algorithms, this scales quite well.

• So what?

Algorithmic significance: “convex character programming”

• For a number of (NP-hard) phylogenetic optimization problems, an optimal

solution can be projected onto some convex character.

• If you find that convex character, you can map backwards to find the

original optimal solution → rapid prototyping of algorithms simply by looping

through convex characters. Some examples:

Algorithmic significance: “convex character programming”

• Q: Given a set of trees on the same taxa X, can you partition X into

size-4 subsets such that in each tree the induced quartets are disjoint?

• I don’t actually know whether this is NP-hard or not. Probably it is. But in

any case I can build an algorithm by looping through all g4 characters in one

of the trees and checking whether any of them gives a valid solution.

Algorithmic significance: “convex character programming”

• Q: Given a set of trees on the same taxa X, can you partition X into

size-4 subsets such that in each tree the induced quartets are disjoint?

• I don’t actually know whether this is NP-hard or not. Probably it is. But in

any case I can build an algorithm by looping through all g4 characters in one

of the trees and checking whether any of them gives a valid solution.

Algorithmic significance: “convex character programming”

• Q: Given a set of trees on the same taxa X, can you partition X into

size-4 subsets such that in each tree the induced quartets are disjoint?

• Can easily be generalised to “and the quartets have the same topology”,

“such that in at least one of trees the quartets are disjoint” and so on.

Algorithmic significance: “convex character programming”

• Q: Given two trees on the same set of taxa, can you find character that

maximizes the absolute difference in parsimony scores of that

character on the two trees?

Algorithmic significance: “convex character programming”

• Q: Given two trees on the same set of taxa, can you find character that

maximizes the absolute difference in parsimony scores of that

character on the two trees?

• It can be proven that g2 contains such an optimal character!

Algorithmic significance: “convex character programming”

• Q: Given two trees on the same set of taxa, can you find character that

maximizes the absolute difference in parsimony scores of that

character on the two trees?

• It can be proven that g2 contains such an optimal character! Both listing and

(especially) uniformly sampling work surprisingly well.

Algorithmic significance: “convex character programming”

• Q: Given two trees on the same set of taxa, can you find character that

maximizes the absolute difference in parsimony scores of that

character on the two trees?

• This has been leveraged to produce very strong lower bounds on the TBR

distance between large trees (Wersch, K., Linz and Stamoulis 2022).

Algorithmic significance: “convex character programming”

• Q: Given a set of trees, find me a maximum agreement forest of the

trees in which each component has at least k taxa.

• Agreement forests are convex characters in which, for each state, all trees

induce the same topology on that state.

Algorithmic significance: “convex character programming”

• Q: Given a set of trees, find me a maximum agreement forest of the

trees in which each component has at least k taxa.

• Loop through all gk characters one of the trees. Can be easily generalized.

Yields an easy O(2.618n) algorithm for the classical problem (k=1).

Algorithmic significance: “convex character programming”

• Use your imagination ☺ The code for counting / listing / sampling gk

characters can be downloaded from my website http://skelk.sdf-eu.org.

http://skelk.sdf-eu.org/

Proof sketches

Proof sketches:

1. That caterpillars maximize gk

An easy (but very useful) recurrence for computing gk(T)

A B

Exactly k taxa

x

An easy (but very useful) recurrence for computing gk(T)

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

Now let’s apply it to caterpillars:

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

Now let’s apply it to caterpillars:

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

Now let’s apply it to caterpillars:

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

gk(Catn) = gk(Catn-1) + gk(Catn-k)

Now let’s apply it to caterpillars:

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

gk(Catn) = gk(Catn-1) + gk(Catn-k) Homogenous linear recurrence

(easy to solve!)

Now let’s apply it to caterpillars:

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

gk(Catn) = gk(Catn-1) + gk(Catn-k) = 0

But why are caterpillars maximizers?

A B

Exactly k taxa

x

A\{x} B

Exactly k-1 taxa

B+=

gk(Catn) = gk(Catn-1) + gk(Catn-k) = 0

Another easy observation: linearization of small subtrees cannot cause

gk to decrease

A B

At most k-1 taxa

C

Another easy observation: linearization of small subtrees cannot cause

gk to decrease

A B

Caterpillar with

|C| taxa

C

A B≤

At most k-1 taxa

• Let T be an arbitrary maximizer of gk(T).

• If such a tripartition exists where |A|, |B| ≥ 2, linearize to get a new tree T’.

• We have gk(T) ≤ gk(T’).

• T’ has fewer cherries than T.

• So by induction gk(T) ≤ gk(T’) ≤ gk(Catn).

• Done!

Proof by induction on (#taxa + #cherries)

A B

Caterpillar with

|C| taxa

C

A B≤

At most k-1 taxa

that caterpillars maximize

• Let T be an arbitrary maximizer of gk(T).

•If such a tripartition does not exist where |A|, |B| ≥ 2 and 2 ≤ |C| ≤ k-1, we can

show that T must have a split D|E where |D|=k (I won’t prove this today).

• So gk(T) = gk(T \ {x}) + gk(T \ D) where x is an arbitrary taxon in D.

• Both terms of the summation have smaller (#taxa + #cherries).

• So gk(T) ≤ gk(Catn-1) + gk(Catn-k)

= gk(Catn)

Proof by induction on (#taxa + #cherries)

A B

Caterpillar with

|C| taxa

C

A B≤

At most k-1 taxa

that caterpillars maximize

• Let T be an arbitrary maximizer of gk(T).

•If such a tripartition does not exist where |A|, |B| ≥ 2 and 2 ≤ |C| ≤ k-1, we can

show that T must have a split D|E where |D|=k (I won’t prove this today).

• So gk(T) = gk(T \ {x}) + gk(T \ D) where x is an arbitrary taxon in D.

• Both terms of the summation have smaller (#taxa + #cherries).

• So gk(T) ≤ gk(Catn-1) + gk(Catn-k)

= gk(Catn) DONE!

Proof by induction on (#taxa + #cherries)

A B

Caterpillar with

|C| taxa

C

A B≤

At most k-1 taxa

that caterpillars maximize

Proof sketches:

2. That fully k-loaded trees minimize gk

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

exactly 3 taxa

exactly 3 taxa

fewer than 3 taxa

(residue subtree)

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

exactly 3 taxa

exactly 3 taxa

fewer than 3 taxa

(residue subtree)

underlying

scaffold tree

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

exactly 3 taxa

exactly 3 taxa

fewer than 3 taxa

(residue subtree)

underlying

scaffold tree

If T is fully k-loaded, then

gk(T) = g2(Scaffold(T))

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

exactly 3 taxa

exactly 3 taxa

fewer than 3 taxa

(residue subtree)

underlying

scaffold tree

So all fully k-loaded trees have the

same gk value (because g2 is

topology invariant)

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

exactly 3 taxa

exactly 3 taxa

fewer than 3 taxa

(residue subtree)

underlying

scaffold tree

What are fully k-loaded trees?

•A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except

perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

exactly 3 taxa

exactly 3 taxa

fewer than 3 taxa

(residue subtree)

underlying

scaffold tree

But why is this minimum?

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) = gk(A+B) gk(C) + gk(A) gk(B+C) + gk(A+B) gk(B+C)

• Note that |A|, |C|, |A+B|, |B+C| all have fewer than n leaves

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) = gk(A+B) gk(C) + gk(A) gk(B+C) + gk(A+B) gk(B+C)

• So by induction the terms gk(A+B), gk(C), gk(A), gk(B+C) are all larger than

or equal to the gk values for corresponding fully k-loaded trees

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) ≥ gk(|A|+|B|) gk(|C|) + gk(|A|) gk(|B+C|) + gk(|A+B|) gk(|B+C|)

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

fl fl fl fl fl fl

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) ≥ gk(|A|+|B|) gk(|C|) + gk(|A|) gk(|B+C|) + gk(|A+B|) gk(|B+C|)

• If we can show that there exists a fully k-loaded tree whose gk(T) value is

equal to the RHS of the above inequality, we are done.

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

fl fl fl fl fl fl

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) ≥ gk(|A|+|B|) gk(|C|) + gk(|A|) gk(|B+C|) + gk(|A+B|) gk(|B+C|)

• Easier case: If |A| or |C| is divisible by k-1. We replace subtree A with a

fully k-loaded tree. This yields a fully k-loaded tree overall, because there

is at most one residue subtree. Done!

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

fl fl fl fl fl fl

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) ≥ gk(|A|+|B|) gk(|C|) + gk(|A|) gk(|B+C|) + gk(|A+B|) gk(|B+C|)

• Harder case: Neither |A| or |C| is divisible by k-1. Problem is that

replacing A might leave us with two residue subtrees, and this is not

allowed

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

fl fl fl fl fl fl

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) ≥ gk(|A|+|B|) gk(|C|) + gk(|A|) gk(|B+C|) + gk(|A+B|) gk(|B+C|)

• Harder case: Neither |A| or |C| is divisible by k-1. Problem is that

replacing A might leave us with two residue subtrees, and this is not

allowed Requires (tricky!) application of induction twice.

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

fl fl fl fl fl fl

Proof by induction on number of taxa that fully k-loaded trees are

minimizers

• Let T be an arbitrary minimizer of gk.

• With a bit of manipulation we can manipulate T so it looks like this, without

increasing gk :

• gk(T) ≥ gk(|A|+|B|) gk(|C|) + gk(|A|) gk(|B+C|) + gk(|A+B|) gk(|B+C|)

• Harder case: Neither |A| or |C| is divisible by k-1. Problem is that

replacing A might leave us with two residue subtrees, and this is not

allowed Requires (tricky!) application of induction twice. Done ☺

A C

exactly k-1 taxa

B

at most k-1 taxamore than 2(k-1)

taxa

fl fl fl fl fl fl

Conclusions / reflections

• Convex character programming – try it ☺ Happy to discuss possible

applications.

• How do gk values vary between the lower and upper bounds? Can we

parameterize this somehow as a function of tree topology?

• How do gk values change under the action of common tree rearrangement

operations?

• What does the vector of gk values tell us about a tree? We know examples

of non-isomorphic trees that have identical gk values. Can we characterize

when this happens?

• Are there other natural restrictions of convex characters on trees that we

could study (in order to further extend the modelling power of convex

character programming?) Ideally allowing efficient counting/listing/sampling!

• Networks…?

Thank you for listening!

