Online seminar on Algorithms and Complexity in Phylogenetics

Sharp upper and lower bounds on a
restricted class of convex characters --
and algorithmic applications!

Steven Kelk

Department of Advanced Computing Sciences (DACS)
Maastricht University, Netherlands

Based on joint work with Ruben Meuwese (DACS)

In: Electronic Journal of Combinatorics 29(1) (2022)

* Phylogenetic trees summarise the evolution of a set of species X.

* Let T be an unrooted (binary) phylogenetic tree on X.
* A character f is simply a partition of X.
* The blocks of f are called states.

» A character is convex on T, if the spanning trees induced by the states —
one spanning tree per state - are vertex disjoint in T.

Convex character { {1,8,4}, {3}, {9,2,7,5}, {0}, ©: }on T
- spanning trees are disjoint!

Non-convex character { {1,8,4,0}, {3}, {9,2,7,5}, ©: }onT
- spanning trees are not disjoint

How many convex characters can a tree have?

What we already knew (K. & Stamoulis 2017, based on Steel 1992):

« The number of convex characters on an unrooted binary tree T with n

leaves is independent of the topology of T, and is equal to the (2n-1)th
Fibonacci number. This is equal to:

@271—1 1
| = ©(1.681%") = ©(2.681")

L Vh 2

What we already knew (K. & Stamoulis 2017):

* What about convex characters where each state contains at least 2
elements of X (i.e. singleton states are not allowed)?

* Let us denote the number of such characters g,(T), and define g,(T)
similarly.

* Note that g,(T) is just the set of all convex characters.

This is not a valid g, character, because of the
states {0}, {3} and

This is a valid g, character:
{1,4,8}, {5,7}, {2,3,9}, {0,6}

What we already knew (K. & Stamoulis 2017):

* The number of g, convex characters on an unrooted binary tree T with n

leaves is independent of the topology of T, and is equal to the (n-1)th
Fibonacci number. This is equal to:

gs (n) — | = ©(1.681")

What we already knew (K. & Stamoulis 2017):

* The number of g, convex characters on an unrooted binary tree T with n

leaves is independent of the topology of T, and is equal to the (n-1)th
Fibonacci number. This is equal to:

gs (n) — | = ©(1.681")

* However, g, is topology dependent ®

* This raised the following question. For each k = 3,
* What is the maximum value that g, can attain on n leaves?
* What is the minimum value that g, can attain on n leaves?

Our new results (1): the maximum

 Let Cat, be the unrooted caterpillar topology on n leaves. (Note that the
actual leaf labels are not important in this work).

a h

c d e f g

Figure 2: A caterpillar tree on 9 taxa.

Our new results (1): the maximum

 Let Cat, be the unrooted caterpillar topology on n leaves. (Note that the
actual leaf labels are not important in this work).

Figure 2: A caterpillar tree on 9 taxa.

Corollary 7. For every n, the maximum value of g, ranging over all trees on n taxa is

gr(Cat,), which is ©(a™), where « is the positive real root of the characteristic polynomial
k k—1

=z — 1.

Our new results (1): the maximum

 Let Cat, be the unrooted caterpillar topology on n leaves. (Note that the
actual leaf labels are not important in this work).

Figure 2: A caterpillar tree on 9 taxa.

Corollary 7. For every n, the maximum value of g, ranging over all trees on n taxa is

gr(Cat,), which is ©(a™), where « is the positive real root of the characteristic polynomial
k k—1

=z — 1.

* | will explain later where this comes from.

Our new results (2): the minimum

Theorem 14. Let n > k. Every fully k-loaded tree T on n taxa is a minimizer for g.

Corollary 15. Forn = k = 2, the minimum value of g ranging over all trees on n taza

15 exactly

q{)frﬁﬂ—l | 1
VB 2]

* A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

* More about this later, too. Let’s first discuss algorithmic significance.

Algorithmic significance:

minimum | maximum
g1 2.618 2.618
g 1.618 1.618
g3 1.272 1.466
g4 1.174 1.380
Js 1.128 1.325
Je 1.101 1.285

Table 1: Each entry « indicates that the minimum (respectively, maximum) value of
gx(T), ranging over all trees on n taxa, grows at the rate ©(a™).

Algorithmic significance:

minimum | maximum
[%)1 2.618 2.618
g 1.618 1.618
g3 1.272 1.466
g4 1.174 1.380
Js 1.128 1.325
J6 1.101 1.285

Table 1: Each entry « indicates that the minimum (respectively, maximum) value of
gx(T), ranging over all trees on n taxa, grows at the rate ©(a™).

* From the results of K. & Stamoulis (2017) we can efficiently count, list and
uniformly sample these characters.

 So you can loop through all g, characters in time ©(g,(T) * poly(n)) — and
the constants hidden by the © notation are small.

Algorithmic significance:

caterpillar random trees
1s | 10s | 100s | 1s | 10s | 100s
g |14 16 | 19 [14] 16 | 19
go | 27| 32 | 37 | 27| 32 | 37
g3 | 34| 41 | 47 [38| 49 | 55
gy | 40| 48 | 56 [56| 66 | T4
gs | 47| 56 | 64 | 73| 84 | 96
gs | 52| 63 | T2 |83 | 101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* From the results of K. & Stamoulis (2017) we can efficiently count, list and
uniformly sample these characters.

 So you can loop through all g, characters in time ©(g,(T) * poly(n)) — and
the constants hidden by the © notation are small.

Algorithmic significance:

caterpillar random trees
1s | 10s | 100s | 1s | 10s | 100s
g |14 16 | 19 [14] 16 | 19
go | 27| 32 | 37 | 27| 32 | 37
g3 | 34| 41 | 47 [38| 49 | 55
gy | 40| 48 | 56 [56| 66 | T4
gs | 47| 56 | 64 | 73| 84 | 96
gs | 52| 63 | T2 |83 | 101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* By the standards of exponential-time algorithms, this scales quite well.

* So what?

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
g2 1.618 1.618
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
5 1.128 1.325
g 14116 19 [14] 16 | 19 gﬁ CToT o5

g |27 327] 37 [27] 32| 37
gs | 34| 41 | 47 [38] 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* For a number of (NP-hard) phylogenetic optimization problems, an optimal
solution can be projected onto some convex character.

« If you find that convex character, you can map backwards to find the
original optimal solution - rapid prototyping of algorithms simply by looping
through convex characters. Some examples:

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
g2 1.618 1.618
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
5 1.128 1.325
g 14116 19 [14] 16 | 19 f’]ﬁ CToT o5

g |27 327] 37 [27] 32| 37
gs | 34| 41 | 47 [38] 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given a set of trees on the same taxa X, can you partition X into
size-4 subsets such that in each tree the induced quartets are disjoint?

* | don’t actually know whether this is NP-hard or not. Probably it is. But in
any case | can build an algorithm by looping through all g, characters in one
of the trees and checking whether any of them gives a valid solution.

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
g2 1.618 1.618
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s [l 1174 1.380]
5 1.128 1.325
g 14116 19 [14] 16 | 19 f’]ﬁ CToT o5

g |27 327] 37 [27] 32| 37
gs | 34| 41 | 47 | 38| 49 | 55
g | 40 | 48 | 56 | 56 | 66 | 74
g5 | 47| 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given a set of trees on the same taxa X, can you partition X into
size-4 subsets such that in each tree the induced quartets are disjoint?

* | don’t actually know whether this is NP-hard or not. Probably it is. But in
any case | can build an algorithm by looping through all g, characters in one
of the trees and checking whether any of them gives a valid solution.

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
: g2 1.618 1.618
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s [l 1174 1.380]
gs 1.128 1.325
g1 | 14| 16 19 | 14| 16 19 9 | 1101 1935

g |27 327] 37 [27] 32| 37
gs | 34| 41 | 47 | 38| 49 | 55
g | 40 | 48 | 56 | 56 | 66 | 74
g5 | 47| 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given a set of trees on the same taxa X, can you partition X into
size-4 subsets such that in each tree the induced quartets are disjoint?

 Can easily be generalised to “and the quartets have the same topology”,
“such that in at least one of trees the quartets are disjoint” and so on.

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
g2 1.618 1.618
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s [l 1174 1.380]
gs 1.128 1.325
g1 | 14| 16 19 | 14| 16 19 g | L1101 1935

g |27 327] 37 [27] 32| 37
gs | 34| 41 | 47 | 38| 49 | 55
g | 40 | 48 | 56 | 56 | 66 | 74
g5 | 47| 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given two trees on the same set of taxa, can you find character that
maximizes the absolute difference in parsimony scores of that
character on the two trees?

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
g2 1.618 1.618
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s [l 1174 1.380]
gs 1.128 1.325
g1 | 14| 16 19 | 14| 16 19 7 1101 1935

g |27 327] 37 [27] 32| 37
gs | 34| 41 | 47 | 38| 49 | 55
g | 40 | 48 | 56 | 56 | 66 | 74
g5 | 47| 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given two trees on the same set of taxa, can you find character that
maximizes the absolute difference in parsimony scores of that
character on the two trees?

* It can be proven that g, contains such an optimal character!

Algorithmic significance: “convex character programming”

minamum | mazimum
g1 2.618 2.618
[Tg, | 1618 1618]
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
e 1.128 1.325
g |14 16 | 19 [14] 16 | 19 A T

g | 27| 32| 37 |27 32 | 37
gs | 34| 41 | 47 |38 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given two trees on the same set of taxa, can you find character that
maximizes the absolute difference in parsimony scores of that
character on the two trees?

* It can be proven that g, contains such an optimal character! Both listing and
(especially) uniformly sampling work surprisingly well.

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
[Tg, | 1618 1618]
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
5 1.128 1.325
g 14116 19 [14] 16 | 19 gﬁ CToT o5

g | 27| 32| 37 |27 32 | 37
gs | 34| 41 | 47 |38 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given two trees on the same set of taxa, can you find character that
maximizes the absolute difference in parsimony scores of that
character on the two trees?

 This has been leveraged to produce very strong lower bounds on the TBR
distance between large trees (Wersch, K., Linz and Stamoulis 2022).

Algorithmic significance: “convex character programming”

MINYMUM | MaTImum
g1 2.618 2.618
[Tg2 | 1618 1.618]
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
gs 1.128 1.325
g |14 16 | 19 |14 | 16 19 9 | L1010 1955

g | 27| 32| 37 |27 32 | 37
gs | 34| 41 | 47 |38 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given a set of trees, find me a maximum agreement forest of the
trees in which each component has at least k taxa.

» Agreement forests are convex characters in which, for each state, all trees
induce the same topology on that state.

Algorithmic significance: “convex character programming”

minamum | mazimum
g1 2.618 2.618
[Tg, | 1618 1618]
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
e 1.128 1.325
g |14 16 | 19 [14] 16 | 19 A T

g | 27| 32| 37 |27 32 | 37
gs | 34| 41 | 47 |38 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

* Q: Given a set of trees, find me a maximum agreement forest of the
trees in which each component has at least k taxa.

* Loop through all g, characters one of the trees. Can be easily generalized.
Yields an easy O(2.618") algorithm for the classical problem (k=1).

Algorithmic significance: “convex character programming”

minamum | mazimum
g1 2.618 2.618
[Tg, | 1618 1618]
caterpillar random trees g3 | 1.272 1.466
1s | 10s | 100s | 1s | 10s | 100s 91| 1174 1.380
5 1.128 1.325
g |14 16 | 19 [14] 16 | 19 0T T 125

g | 27| 32| 37 |27 32 | 37
gs | 34| 41 | 47 |38 49 | 55
gs |40 [48 | 56 | 56| 66 | 74
g |47 56 | 64 | 73] 84 | 96
g | 52| 63 | 72 | 83101 | 116

Table 2: The numbers in row g indicate the largest n for which, on caterpillar (respec-
tively, random) trees with n taxa, all g; characters could be listed within {1,10,100}
seconds.

 Use your imagination © The code for counting / listing / sampling g,
characters can be downloaded from my website hitp://skelk.sdf-eu.orag.

http://skelk.sdf-eu.org/

Proof sketches

Proof sketches:
1. That caterpillars maximize g,

An easy (but very useful) recurrence for computing g,(T)

S 7
LT

Exactly k taxa

An easy (but very useful) recurrence for computing g,(T)

IS
>

Exactly k taxa

/

Exactly k-1 taxa

-
S
—
S

Now let’s apply it to caterpillars:

IS
>

Exactly k taxa

/

Exactly k-1 taxa

<
I
<
I

Now let’s apply it to caterpillars:

IS
>

Exactly k taxa

/

Exactly k-1 taxa

Figure 2: A caterpillar tree on 9 taxa.

— | |
5
S

Now let’s apply it to caterpillars:

IS
>

Exactly k taxa

/

Exactly k-1 taxa

Figure 2: A caterpillar tree on 9 taxa.

| <
—
\

g«(Cat,) = g(Cat, ;) + g, (Cat,)

Now let’s apply it to caterpillars:

RS
>

Exactly k taxa

/

Exactly k-1 taxa

Figure 2: A caterpillar tree on 9 taxa.

— | |
5
S

o(Cat,)) =g, (Cat,,) +g.(Cat,,) Homogenous linear recurrence
(easy to solve!)

Now let’s apply it to caterpillars:

IS
>

Exactly k taxa

/

Exactly k-1 taxa

Figure 2: A caterpillar tree on 9 taxa.

— | |
5
S

g«(Cat,) = g(Cat, ;) + g, (Cat,) mk — i:k_.l —1 =0

¢c d e f g

I |

Figure 2: A caterpillar tree on 9 taxa.
Exactly k taxa

S

Exactly k-1 taxa

But why are caterpillars maximizers?

g«(Cat,) = g(Cat, ;) + g, (Cat,) mk — i:k_.l —1 =0

Another easy observation: linearization of small subtrees cannot cause
g, to decrease

At most k-1 taxa

Another easy observation: linearization of small subtrees cannot cause

g, to decrease

A\ /B
/ \ Caterpillar with

|C| taxa

IA
x>
8]

C

At most k-1 taxa

Proof by induction on (#taxa + #cherries) that caterpillars maximize

/ B
\ Caterpillar with

|C| taxa

At most k-1 taxa

 Let T be an arbitrary maximizer of g,(T).

« If such a tripartition exists where [A|, |B| = 2, linearize to get a new tree T".
* We have g,(T) < g,(T).

« T’ has fewer cherries than T.

* So by induction g,(7T) < g.(T’) < g,(Cat,).

* Done!

Proof by induction on (#taxa + #cherries) that caterpillars maximize

/ B
\ Caterpillar with

|C| taxa

At most k-1 taxa

* Let T be an arbitrary maximizer of g,(T).
*If such a tripartition does not exist where |A|, |B| 2 2 and 2 < |C| < k-1, we can
show that T must have a split D|E where |D|=k (I won’t prove this today).
* S0 g, (T) =g (T \ {x}) + g.(T \ D) where x is an arbitrary taxon in D.
» Both terms of the summation have smaller (#taxa + #cherries).
* So g(7T) = gi(Cat,,) + gy (Cat,,)
= gk(Catn)

Proof by induction on (#taxa + #cherries) that caterpillars maximize

/ B
\ Caterpillar with

|C| taxa

At most k-1 taxa

* Let T be an arbitrary maximizer of g,(T).
*If such a tripartition does not exist where |A|, |B| 2 2 and 2 < |C| < k-1, we can
show that T must have a split D|E where |D|=k (I won’t prove this today).
* S0 g, (T) =g (T \ {x}) + g.(T \ D) where x is an arbitrary taxon in D.
» Both terms of the summation have smaller (#taxa + #cherries).
* So g(T) = gi(Cat,,) + g (Caty)
= gy (Cat,) DONE!

Proof sketches:
2. That fully k-loaded trees minimize g,

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

fully 4-loaded tree

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

exactly 3 taxa

fewer than 3 taxa

(residue subtree) e f exactly 3 taxa

fully 4-loaded tree

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

exactly 3 taxa

fewer than 3 taxa

(residue subtree) e f exactly 3 taxa

fully 4-loaded tree

underlying
scaffold tree

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

exactly 3 taxa

underlying
fewer than 3 taxa

. f scaffold tree
(residue subtree) e exactly 3 taxa

If Tis fully k-loaded, then
fully 4-loaded tree 9«(T) = g,(Scaffold(T))

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

exactly 3 taxa

underlying
fewer than 3 taxa

. f scaffold tree
(residue subtree) e exactly 3 taxa

So all fully k-loaded trees have the
fully 4-loaded tree same g, value (because g, is

topology invariant)

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant

subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

exactly 3 taxa

fewer than 3 taxa

(residue subtree) e f exactly 3 taxa

fully 4-loaded tree

underlying
scaffold tree

|

qf,f;ﬂ—iﬂ—l

V5

Ll
2

|

What are fully k-loaded trees?

*A fully k-loaded tree is a tree where the taxa can be partitioned into pendant
subtrees, such that all pendant subtrees have exactly k-1 taxa, except
perhaps one, which will have at most k-1 taxa (the “residue” subtree).

exactly 3 taxa

underlying
fewer than 3 taxa

. f scaffold tree
(residue subtree) e exactly 3 taxa

But why is this minimum?
fully 4-loaded tree

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, :

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

Let T be an arbitrary minimizer of g,.
With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

T

more than 2(k-1) at most k-1 taxa
taxa B

exactly k-1 taxa

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

T

more than 2(k-1) at most k-1 taxa
taxa B

exactly k-1 taxa

* Ou(T) =gu(A+B) g (C) + g(A) gu(B+C) + g (A+B) g,(B+C)

* Note that |A|, |C|, |A+B|, |B+C| all have fewer than n leaves

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

T

more than 2(k-1) at most k-1 taxa
taxa B

exactly k-1 taxa

* Ou(T) =gu(A+B) g (C) + g(A) gu(B+C) + g (A+B) g,(B+C)

« So by induction the terms g,(A+B), 9,(C), g.(A), g9,(B+C) are all larger than
or equal to the g, values for corresponding fully k-loaded trees

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

T

more than 2(k-1) at most k-1 taxa
taxa B

exactly k-1 taxa

. gl 2glA+B) al(C) + gWlAD ariB+C) + gia+B)) dlB+c))

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

T

more than 2(k-1) at most k-1 taxa
taxa B

exactly k-1 taxa

. gl 2glA+B) al(C) + gWlAD ariB+C) + gia+B)) dlB+c))

 If we can show that there exists a fully k-loaded tree whose g,(T) value is
equal to the RHS of the above inequality, we are done.

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

T

more than 2(k-1) at most k-1 taxa
taxa B

exactly k-1 taxa

. gl 2glA+B) al(C) + gWlAD ariB+C) + gia+B)) dlB+c))

« Easier case: If |A| or |C| is divisible by k-1. We replace subtree A with a
fully k-loaded tree. This yields a fully k-loaded tree overall, because there
IS at most one residue subtree. Done!

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

A/ \C

more than 2(k-1) at most k-1 taxa
taxa

B

exactly k-1 taxa

. gl 2glA+B) al(C) + gWlAD ariB+C) + gia+B)) dlB+c))

« Harder case: Neither |A| or |C]| is divisible by k-1. Problem is that
replacing A might leave us with two residue subtrees, and this is not
allowed ®

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

A/ \C

more than 2(k-1) at most k-1 taxa
taxa

B

exactly k-1 taxa

. gl 2glA+B) al(C) + gWlAD ariB+C) + gia+B)) dlB+c))

« Harder case: Neither |A| or |C]| is divisible by k-1. Problem is that
replacing A might leave us with two residue subtrees, and this is not
allowed ® Requires (tricky!) application of induction twice.

Proof by induction on number of taxa that fully k-loaded trees are
minimizers

« Let T be an arbitrary minimizer of g,.
« With a bit of manipulation we can manipulate T so it looks like this, without

increasing g, : \ /

A/ \C

more than 2(k-1) at most k-1 taxa
taxa

B

exactly k-1 taxa

. gl 2glA+B) al(C) + gWlAD ariB+C) + gia+B)) dlB+c))

« Harder case: Neither |A| or |C]| is divisible by k-1. Problem is that
replacing A might leave us with two residue subtrees, and this is not
allowed ® Requires (tricky!) application of induction twice. Done ©

Conclusions / reflections

« Convex character programming — try it © Happy to discuss possible
applications.

* How do g, values vary between the lower and upper bounds? Can we
parameterize this somehow as a function of tree topology?

* How do g, values change under the action of common tree rearrangement
operations?

» What does the vector of g, values tell us about a tree? We know examples
of non-isomorphic trees that have identical g, values. Can we characterize
when this happens?

* Are there other natural restrictions of convex characters on trees that we
could study (in order to further extend the modelling power of convex
character programming?) Ideally allowing efficient counting/listing/sampling!

* Networks...?

Thank you for listening!

