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Phylogenetic trees

A rooted phylogenetic tree on X 

is a rooted connected acyclic 

graph whose internal vertices 

have degree three except for 

the root which has degree two, 

and whose leaf set is X.

An (unrooted) phylogenetic tree 

on X is a connected acyclic graph 

whose internal vertices have 

degree three and whose leaf set 

is X.
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Tree bisection and reconnection (TBR)



Let dTBR(T,T’) denote the minimum number of TBR operations required to 

transform T into T’. Then, d
TBR (T,T’) induces a metric on the space of all 

unrooted phylogenetic trees with n leaves. 

(Robinson, 1971; Allen and Steel, 2001).

Computing d
TBR (T,T’) is NP-hard and fixed-parameter tractable, when 

parameterized by k=d
TBR. 

(Hein et al., 1996; Allen and Steel, 2001).



Subtree reduction 

Allen and Steel, 2001



Chain reduction

Allen and Steel, 2001



Theorem. (Allen and Steel, 2001).

[Linear kernel] Let S and S’ be two trees obtained from T and T’ by 

repeated applications of the subtree and chain reduction until no further 

reduction is possible. Then

|X’| ≤ 28d
TBR

(T,T’),

where X’ is the leaf set of S and S’.



• We reanalysed Allen and Steel’s kernel, and show that it is considerably 

smaller than they claimed: 15d
TBR 

– 9. Moreover, this is tight. (K. & Linz, 

SIAM Journal on Discrete Mathematics 2019)

• We devised five new reduction rules which, when combined with Allen 

and Steel’s reduction rules, yield a kernel of size: 11d
TBR 

– 9. This is also 

tight. (K. & Linz, Annals of Combinatorics, 2020)

• Today: We introduce a number of ‘third generation’ reduction rules 

which reduce the kernel size to 9d
TBR 

– 8. And, yes, essentially tight ☺



An unrooted phylogenetic 

network N on X is a simple 

graph whose internal vertices 

have degree three and whose 

leaf set is X.

From trees to networks



Reticulation number of N is   

r(N) = |E| - (|V|-1).

(equal to cyclomatic number).

Example. r(N) = 3



Theorem. (van Iersel et al., 2018)

Let T and T’ be two trees. Then

d
TBR

(T,T’) = minimum reticulation number of a

network N that displays T and T’

Computing d
TBR

≈ combining trees into networks



2k breakpoints to divide across 3(k-1) sides
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2020: Achieving 11k…

Idea. We described 5 (!) new reduction rules which strengthen the 

subtree and chain reductions and achieve the following:

• At most 3 taxa on a side if it has no breakpoints;

• At most 4 taxa on a side if it has 1 breakpoint;

• At most 4 taxa on a side if it has 2 breakpoints.

By dividing 2k breakpoints across 3(k-1) sides, we concluded that the 

size of the new kernel is at most…

4*2k + 3*(k-3) = 11k-9.

The correctness of these new rules requires use of the agreement 

forest characterization of d
TBR

.
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First bottleneck: a “1|3” side
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Some other common 3-chain…
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This is distance preserving…and creates a 

common subtree that we can reduce!

g’

g’



1|3 sides can eat each other…

Idea. Each of these 1|3 sides contains a common chain of length 3, so 

you can use the chain in one 1|3 side to trigger the reduction of 

another 1|3 side!

After doing this to exhaustion, there can be at most one 1|3 side.



Second bottleneck: a “2|2” side

a b c d



Second bottleneck: a “2|2” side
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If we could turn 2|2 sides into 1|3 

sides we could then use the 1|3 

sides to eat each other. BUT….

a b c d

a b c da

b

c d



…it is not always allowed to “flip” a 

2|2 side into a 1|3 side. So when is

it allowed?

a b c d

a b c da

b

c d
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A 2|2 side can be turned into a 1|3 

side when there are “many” leaves 

on adjacent sides.



a b c d

a b c da

b c

d

A 2|2 side can be turned into a 1|3 

side when there are “many” leaves 

on adjacent sides.



a b c d

a b c da

b c

d

A 2|2 side can be turned into a 1|3 

side when there are “many” leaves 

on adjacent sides.



1|3 and densely flanked 2|2

sides obliterate each other!

Idea… 2|2 sides that have many leaves on adjacent sides (“densely 

flanked 2|2 sides”) can be turned into 1|3 sides, which can then eat 

themselves.

At the point that this process cannot continue anymore, all but 1 of the 

1|3 sides and the densely flanked 2|2 sides have gone.

(A similar type of dense-flanking argument can be used to prove that 

2|1|1 sides, a third type of bottleneck, can also be destroyed, but I 

won’t talk about that today.)



Insight… Apart from 1 possible exception, the only surviving sides with 

4 leaves are “sparsely flanked” i.e. have relatively few leaves on 

adjacent sides.

So viewed together they contribute on average fewer than 4 leaves per 

side.



a b c d
≤ 1

leaf

≤ 1

leaf

The only surviving sides

with 4 leaves are sparsely flanked:



Sketch of upper bounding argument

• We have 2k breakpoints to divide across 3(k-1) sides.

• We can safely assume there are no sides with 0 or 2 leaves.

• Let p, q, r be the number of sides with 4, 3 or 1 leaves.

• Crucially: all except ≤1sides with 4 leaves are “sparsely flanked”, 

which means they have at least two adjacent sides with 1 leaf.

• But each side with one leaf can be shared by at most 4 sides with 4 

leaves, so r ≥ (2/4)p.



Sketch of upper bounding argument

• We have 2k breakpoints to divide across 3(k-1) sides.

• We can safely assume there are no sides with 0 or 2 leaves.

• Let p, q, r be the number of sides with 4, 3 or 1 leaves.

• Crucially: all except ≤1sides with 4 leaves are “sparsely flanked”, 

which means they have at least two adjacent sides with 1 leaf.

• But each side with one leaf can be shared by at most 4 sides with 4 

leaves, so r ≥ (2/4)p.

• If we crunch the numbers this gives an upper bound of 9k-8 on the 

kernel ☺



Conclusions and future work

We achieved the improvement from 11k-9 to 9k-8 by introducing three 

new powerful reduction rules.

Can we go below 9k-8 ? Probably, but…

…auxiliary proofs and lemmas are already extremely technical 

Can we analytically and/or computationally (semi-)automate the search 

for new reduction rules, proofs of correctness and bounding arguments 

to keep proof complexity under control?

Can the new reduction rules be used elsewhere?

Do the new reduction rules have added value in practice? (Probably: the 

11k-9 rules already work better in practice than the 15k-9 rules: 

Wersch, K., Linz, Stamoulis, Annals of Operations Research 2022)



Thank you for listening!

More details at:

• Deep kernelization for the Tree Bisection and Reconnnect (TBR) distance in 
phylogenetics, https://arxiv.org/abs/2206.04451 (K., Linz and Meuwese, 2022)

• New reduction rules for the tree bisection and reconnection distance (K. and Linz, 
Annals of Combinatorics 24(3), 2020)

https://arxiv.org/abs/2206.04451

