
Beaches of islands of tractability: Hardness
results, exact algorithms and approximation
algorithms for parsimony and minimum perfect
phylogeny haplotyping problems

Leo van Iersel1, Judith Keijsper1, Steven Kelk2, Leen Stougie12

(1) Technische Universiteit Eindhoven (TU/e)
(2) Centrum voor Wiskunde en Informatica (CWI), Amsterdam

Email: S.M.Kelk@cwi.nl
Web: http://homepages.cwi.nl/~kelk

2

SNPs and Haplotyping (1)

• Variation in the human population

• It is widely known that the genomes of any two humans are 99% identical
i.e. they have the same nucleotide at more than 99% of the sites along the
genome.

• The sites at which significant variation (5% or more) does occur are called
Single Nucleotide Polymorphisms (SNPs). Dominant form of human
genetic variation.

• Example: Suppose you observe that 15% of human chromosomes have
an A nucleotide at site X, while the other 85% have a C nucleotide at that
site. Then site X is an SNP.

• Although 3-way variation is possible in an SNP (e.g. A, G, and C are each
observed at that site in more than 5% of the population), most SNPs are
binary (e.g. only A and C are observed at that site in more than 5% of the
population.)

3

SNPs and Haplotyping (2)

• Humans are diploid organisms

• For each region of the genome we actually have two chromosome copies.

agtActggagcttGgctcac
agtActggagcttTgctcac

agtCctggagcttTgctcac
agtCctggagcttGgctcac

agtCctggagcttTgctcac
agtActggagcttGgctcac

agtActggagcttTgctcac
agtActggagcttTgctcac

agtActggagcttGgctcac
agtCctggagcttGgctcac

4

SNPs and Haplotyping (2)

• Humans are diploid organisms

• For each region of the genome we actually have two chromosome copies.

agt0ctggagctt0gctcac
agt0ctggagctt1gctcac

agt1ctggagctt1gctcac
agt0ctggagctt0gctcac

agt0ctggagctt1gctcac
agt0ctggagctt1gctcac

agt0ctggagctt0gctcac
agt1ctggagctt0gctcac

agt1ctggagctt1gctcac
agt1ctggagctt0gctcac

• Each chromosome copy thus induces a haplotype (a string over the
{0,1} alphabet). Two chromosome copies per person, so two haplotypes
per person. (E.g. orange woman: 00 and 10.)

5

SNPs and Haplotyping (3)

• Finding haplotypes is not cheap…

• Ideally we would like to identify the two haplotypes of individuals in a
population. But this is still expensive to do in the lab.

• It’s much cheaper, however, to obtain genotype data. A genotype is a
conflation of the two corresponding haplotypes and is written as a string
over the {0,1,2} alphabet. Problem: information is lost, cannot distinguish
between 0/1 and 1/0.

agt0ctggagctt0gctcac
agt0ctggagctt1gctcac

agt1ctggagctt1gctcac
agt0ctggagctt0gctcac

agt1ctggagctt1gctcac
agt1ctggagctt0gctcac

0 2

2 2

1 2

Genotype:

Genotype:

Genotype:

6

SNPs and Haplotyping (4)

• Inferring plausible haplotype data from genotype data

• The goal is to infer the haplotypes (i.e. {0,1} strings) of individuals within
a population, given only the genotypes (i.e. {0,1,2} strings) of the
individuals in the population.

• Genotypes lose information so in general many solutions are possible.
What are “good” (i.e. biologically realistic) solutions?

• A critical observation is that, as a consequence of sexual reproduction (i.e.
the inheritance of chromosomes from parents) individuals in a population
may have common haplotypes.

• The concept of parsimony (for which there is some biological evidence)
argues that we should choose the smallest possible set of haplotypes
that can explain the observed variety in the genotypes.

• Leads to a beautiful combinatorial optimisation problem...

7

• A genotype is modelled as a string over the alphabet {0,1,2}.

• A haplotype is modelled as a string over the alphabet {0,1}.

• Two haplotypes h1, h2 resolve a genotype g iff:-

At each site where g has a 0, h1 and h2 both have a 0;

At each site where g has a 1, h1 and h2 both have a 1;

At each site where g has a 2, h1 and h2 are different i.e. 0/1 or 1/0.

• If g is resolved by h1 and h2 we write g = h1 + h2. (In general a genotype may
be resolved by many different pairs of haplotypes.)

Parsimony Haplotyping (PH)
Input: A set of n genotypes G, each of length m;
Output: The smallest possible set of length-m haplotypes H such that each
genotype is resolved by some pair of the haplotypes (in which case we say
that H resolves G.)

Parsimony Haplotyping (PH)

8

Parsimony Haplotyping (PH)

Input: A set of n genotypes G, each of length m;

Output: The smallest possible set of length-m haplotypes H such that each
genotype is resolved by some pair of the haplotypes (in which case we
say that H resolves G.)

• Toy example: suppose the input G is: 122, 201, 022.

• A smallest possible set of haplotypes that resolves G has size 4, e.g. 101,
001, 110, 010.

101
110+
122

001
101+
201

010
001+
022

9

Adding a phylogenetic restriction to the PH model

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A set of n genotypes G, each of length m

Output: The smallest possible set of length-m haplotypes H such that each
genotype is resolved by some pair of the haplotypes and such that the
haplotypes H permit a perfect phylogeny. Or ‘null’ if no solutions exist.

• A set of haplotypes permits an (undirected) perfect phylogeny iff the
haplotypes can be placed at the leaves of an unrooted evolutionary tree,
where each site mutates at most once.

• Well-known fact: assuming the haplotypes H are arranged as the rows
of a matrix, H permits a perfect phylogeny iff the following forbidden
submatrix F does not appear:

00
01
10
11

10

• Much work has been done on PH, but very little on MPPH. Both problems are,
in general, NP-hard. (The problem of determining whether ANY perfect
phylogeny solution exists, PPH, is linear-time solvable.) Heavy reliance on IP
(Integer Programming) heuristics.

• Inspired by (amongst others) the paper “Islands of tractability for parsimony
haplotyping” (Sharan, Halldórsson, Istrail - 2005) we wanted to explore the
interface between ‘hard’ and ‘easy’ instances of these problems.

• PH(j,k) is the PH problem where each genotype has at most j 2s per row, and
(assuming the input genotypes are given as the rows of a matrix) at most k 2s
per column.

• A ‘*’ denotes no restriction e.g. PH(3,*) is the problem with no restriction on
the number of 2s per column, but at most three 2s per genotype.

• Same definition for MPPH.

Bounded instances of PH and MPPH

11

Before and after our paper

Parsimony Haplotyping (PH)

• PH(4,3) is APX-hard (Sharan,
Halldórsson, Istrail – 2005)

• PH(3,*) is APX-hard (Lancia, Pinotti,
Rizzi - 2004.)

• PH(2,*) is in P (Lancia et al,
independently Cilibrasi et al - 2005.)

• PH(j,*) approximable in polynomial
time with approx. ratio 2j-1

• PH(3,3) is APX-hard (3D-MATCHING-3)

• PH(*,1) is in P

• Polynomial- time approximation
algorithms for PH(*,k) with approx. ratio
linear in k.

• More “islands of tractability”

Minimum Perfect Phylogeny
Haplotyping (MPPH)

• NP-hard in general (Bafna, Gusfield,
Hannenhalli, Yooseph - 2004.)

• No approximation algorithms (with
performance guarantees) were known

• MPPH(3,3) is APX-hard (V.COVER)

• MPPH(2,*) is in P, by reduction to
PH(2,*)

• MPPH(*,1) is in P, by reduction to
PH(*,1)

• Polynomial-time approximation
algorithms for MPPH(*,k) with approx.
ratio linear in k

• More “islands of tractability”

12

• For both PH and MPPH, the main open problem left is (*,2).

• Sharan et al showed that PH(*,2) is in P for ‘clique’ instances.

• We found the analogous result for MPPH(*,2). Surprisingly complicated!

• STOP PRESS! We’ve also found a polynomial-time algorithm for PH(*,2) ‘clique’
instances where certain given haplotypes must be in the solution. But we’re still
checking details…might lead eventually to PH(*,2) algorithm

• Today I will sketch the following:

• Polynomial-time algorithm for PH(*,1)

• Polynomial-time algorithm for MPPH(*,1)

• Polynomial-time algorithm for MPPH(*,2) on ‘clique’ instances.

• Polynomial-time approximation algorithms for PH(*,k) and MPPH(*,k)

The importance of cliques…

13

• Two genotypes g1 and g2 are said to be compatible iff at each site where
they are non-equal, one of the two genotypes has a 2. For example 020 and
210 are compatible but 020 and 120 are not. (Incompatible genotypes can
never share haplotypes.)

• The Compatibility Graph Comp(G) of a set of genotypes G has:
a vertex for every genotype g in G;
an edge between two vertices g1, g2 iff g1 and g2 are compatible.

• A haplotype h is said to be consistent with g iff at each site where g and h
are non-equal, g has a 2. For example 010 is consistent with 022 but 110 is
not. If g1 and g2 are compatible and h is consistent with both, we write
g1 ~h g2.

Compatibility and consistency

14

0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1

g1

g2

g3

g4

g5

g6

g7

g1

g2

g7

g3

g4

g6

g5

Example of an input
genotype matrix G

Compatibility graph
Comp(G)

15

The PH(*,1) compatibility graph has a special structure

In PH(*,1), the following facts hold:

(1) If two genotypes g1 and g2 are compatible, then there is precisely one
haplotype h that is consistent with both of them. (At each column, read off
the non-2 element.) So each edge in Comp(G) corresponds to a unique
haplotype.

(2) The compatibility graph Comp(G) is a 1-sum of cliques, and is thus chordal.

Related to (1), the following is also true:

(3) Given any mutually compatible set of genotypes (which thus appear as a
clique c in the compatibility graph), there is precisely one haplotype that is
consistent with all of them. (At each column, read off the non-2 element.)
We call this the clique haplotype hc for that clique c.

16

0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1

g1

g2

g3

g4

g5

g6

g7

g1

g2

g3

h1

h1 h2

h2 h2

h2
h2

h2 g6

g5

g7 g4

Clique haplotype for red clique (i.e. h1) is: 0011001

Clique haplotype for blue clique (i.e. h2) is: 0010001

Clique haplotype for green clique (i.e.h3) is: 1000001

h1

h3

17

Algorithm idea:

• The graph Comp(G) is chordal, and thus has a simplicial vertex. (A vertex
whose closed neighbourhood is a clique.) Removing a simplicial vertex (and
its incident edges) still leaves a chordal graph.

• We build the solution H by repeatedly ‘peeling’ vertices away from
Comp(G), each time adding haplotypes to a haplotype set H’ (that is initially
empty.) Specifically:

• At every iteration, locate a simplicial vertex (genotype) g. Depending on
which haplotypes are already in H’, add (at most) two haplotypes h1 and h2
(such that g = h1 + h2) to H’, and then remove g and its incident edges from
Comp(G).

Repeat until Comp(G) is empty. Return H’ as the final solution H.

• But, for each g, how do we decide which h1 and h2 to add to H’? Tempting
to always use the clique haplotypes, but that’s not always optimal...

18

Try each of the following steps in order and stop once a step has been
executed. (hc is the clique haplotype corresponding to g, defined at the
start of the algorithm.)

1. If g has no 2s, simply add g to H’.

2. If g is already resolved by some pair of haplotypes in H’, there’s no need to
add new haplotypes to H’.

3. If just adding the clique haplotype of g to H’ allows H’ to resolve g, do it.

4. If just adding some non-clique haplotype to H’ allows H’ to resolve g, do it.

5. If g is not an isolated vertex, add {hc, h} to H’ (where g = hc + h.)

6. Add any two haplotypes h1, h2 to H’ such that g = h1 + h2.

Optimality of algorithm proved by induction. (Not given here.)

19

In MPPH(*,1) some resolutions are forbidden…

0 0

0 1

1 0

2 2

0 0

0 1

1 0

0 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

0 1

1 0

Two columns
in G

0 0

0 1

1 0

resolve

Corresponding
columns in H

Corresponding
columns in H

Eliminate
dupicates

Eliminate
dupicates

= FORBIDDEN
RESOLUTION

= SAFE
RESOLUTION

20

• In PH(*,1), there will – for each pair of columns – be at most one row that
is 22, and if such a row exists there will be no other 2s in those columns.

• Idea: to reduce MPPH(*,1) to PH(*,1), we have to discourage such rows
from resolving the forbidden way.

• We do this by adding, for each pair of columns where a 22 can be seen, a
‘blocking’ column that biases resolutions in favour of the safe way.

Reducing MPPH(*,1) to PH(*,1) by discouraging
forbidden resolutions

0 0

0 1

1 0

2 2

0 0 0

0 1 1

1 0 1

2 2 1

becomes

Idea is that, within PH(*,1), the 22
might still choose the forbidden
resolution (e.g. 00/11 in this case)
but the haplotypes used to do this
cannot be shared by any other
genotypes, because of the extra
column. So just as good, if not better,
to choose the safe resolution. So
(assuming feasibility) there exist
optimal solutions to PH(*,1) where all
such 22 resolutions are safe.

21

MPPH(*,2) on clique instances

• Sharan et al showed that PH(*,2) is in P if the compatibility graph is a clique
i.e. if all genotypes are mutually compatible.

• We have proved the same for MPPH(*,2).

• Surprisingly complicated! Main complication is that, unlike the PH(*,2) case,
using the all-0 haplotype can sometimes cause forbidden resolutions.

• Here I demonstrate the most important ideas/steps behind the algorithm.

22

• We can assume (by a relabelling argument) that the input matrix is restricted
to {0,2}.

• If there are 3 or more genotypes in the input, the only haplotype that is
consistent with all genotypes is the all-0 haplotype (because every column must
contain a 0.)

• The restricted compatibility graph ResComp(G) is defined as follows:-

A vertex for every genotype g;

An edge between two genotypes g1 and g2 iff there exists some
haplotype h not equal to the all-0 haplotype, such that g1 ~h g2.
(Equivalently, iff there exists some column where g1 and g2 both have 2s.)

• For an edge (g1,g2) in ResComp(G), define the edge haplotype for that edge
as the haplotype having 1s in columns where g1 and g2 both have a 2, and 0s
everywhere else. (These are useful for avoiding the forbidden submatrix!)

Foundations for the MPPH(*,2)-clique algorithm

23

1. If the input G does permit solutions, then every vertex in
the restricted compatibility graph has degree at most 2 i.e.
consists of paths, cycles and isolated vertices.

2. It is never permitted to resolve a degree-2 vertex in the
restricted compatibility graph with the all-0 haplotype.

3. If you resolve a genotype g with haplotypes h1 and h2,
and h1 and h2 are both consistent with other haplotypes,
then h1 and h2 are uniquely defined (and, for deg-2
vertices, are equal to the adjacent edge haplotypes.)

4. Genotypes that cannot share both their haplotypes, can be
thought of as having at least one private haplotype that
no other genotypes can share.

2 2 2

2 0 0

0 2 0

0 0 2

Critical observations

2 2

0 2

2 0

forbidden!

The 22 here must
not be resolved

00/11.

24

Example of restricted compatibility graph

Vertices that in the beginning are degree-2 are coloured yellow.
These can never be resolved using the all-0 haplotype!

25

Step 1: Where degree-2 vertices can be resolved as the
sum of their two adjacent edge haplotypes, do that.

A red edge denotes that the corresponding edge haplotype has been
put in the solution. Resolved genotypes are also shown in red.

h1

g1

h2

h3 h4 h5

g2 g3

g1 = h1 + h2
g2 = h3 + h4
g3 = h4 + h5

26

Step 2: Resolve genotypes that are adjacent to edge
haplotypes added in the previous step (i.e. in this case
where yellow vertices are next to red edges)

27

The new red edges, representing the newly added haplotypes, will be
private haplotypes and thus cannot be shared by any other genotypes

(symbolised here by the edge leaving the vertex at an angle.)

Step 2: Resolve genotypes that are adjacent to edge
haplotypes added in the previous step (i.e. in this case
where yellow vertices are next to red edges), done

28

29

Step 3: Unless all components are ‘bad’, or no black
genotypes left, add all-0 haplotype and use it to resolve
remaining black genotypes

30

Step 3: Unless all components are ‘bad’, or no black
genotypes left, add all-0 haplotype and use it to resolve
remaining black genotypes…done!

(all-0)

(all-0) (all-0)

(all-0)

31

Step 4: Each genotype that is still unresolved but
adjacent to an edge haplotype already in the solution,
resolve it using that edge haplotype…

(all-0)

(all-0)

(all-0)

32

Step 4: Each genotype that is still unresolved but
adjacent to an edge haplotype already in the solution,
resolve it using that edge haplotype…done.

(all-0)

(all-0) (all-0)

(all-0)

33

(all-0)

(all-0) (all-0)

(all-0)

34

(all-0)

(all-0) (all-0)

(all-0)

Step 5: Take a maximum matching on the remaining
yellow genotypes and add the corresponding edge
haplotypes…

35

(all-0)

(all-0) (all-0)

(all-0)

Step 5: Take a maximum matching on the remaining
yellow genotypes and add the corresponding edge
haplotypes…done.

36

(all-0)

(all-0) (all-0)

(all-0)

Step 6: Finally, resolve each remaining isolated
genotype using an arbitrary edge haplotype (plus one
other haplotype.)

37

Approximation Algorithms

38

Solving/approximating PH and MPPH

• In practice, Integer Programming (IP) and SDP (Semi-Definite Programming)
methods are used to solve PH (and, to a lesser extent, MPPH.) These methods
can cope with inputs with up to tens of rows and tens of columns.

• Interestingly enough there are very few methods which give guaranteed
approximation ratios.

• Lancia et al have given two separate approximation algorithms (one
combinatorial, one based on LP-rounding) which can approximate PH(j,*) with
approximation ratio 2j-1. (LP-rounding method does not actually need j fixed to
guarantee polynomial running time.)

• Yao-Ting Huang, Kun-Mao Chao & Ting Chen (2005) have given an
approximation algorithm with approx. ratio O(log n) but with running time
potentially exponential in j.

• General problem: approximation ratios and/or running time explode
exponentially as a function of the maximum number of 2s per row!

39

Approximation PH(j,k)…eliminating dependency on j

• We have developed bounds (and simple polynomial-time algorithms) which
allow us to give approximation ratios for PH(*,k) that are linear in k, for both
PH and MPPH. Actually, we do not need k to be a constant.

• These bounds/algorithms are thus an improvement over existing “j”-based
ratios for instances where the maximum number of 2s seen in a genotype, is
large.

• In our definition of PH and MPPH it is possible that some genotypes in the
input do not contain any 2s i.e. are themselves “haplotypes” that have to
appear in the solution.

• The versions of PH and MPPH where every genotype contains at least one 2,
we call PH-h and MPPH-h

• We make this distinction because we can approximate PH-h better than PH
(and likewise MPPH-h better than MPPH.)

40

Problem Approx. ratio as function of k Approx. ratio
for k=2, 3, 4…

PH(*,k)-h 2.75, 3.625,
4.45, …

MPPH(*,k)-h 3.33, 4.5, 5.6, …

PH(*,k) 3.5, 5, 6.5, …

MPPH(*,k) 4, 6, 8,…

⎟
⎠
⎞

⎜
⎝
⎛

+
⎟
⎠
⎞

⎜
⎝
⎛−+

1
1

2
3

4
7

4
3

k
k

Our approximation ratios

1
2)2)(1(

+
−++

k
kk

2
1

2
3

+
k

k2

Today I’ll show how the PH(*,k)-h ratio is achieved.

41

Two existing lower bounds

• Well known crude lower bound: For any PH or MPPH instance with n
genotypes, at least the following number of haplotypes are needed:

nnnLBsqrt 2
2

811)(≈⎥
⎥

⎤
⎢
⎢

⎡ ++
=

• Sharan et al showed that, for any clique instance of PH(*,k)-h on n
genotypes, the following is a tight lower bound:

⎥⎥
⎤

⎢⎢
⎡ +

+
= 1

1
2),(

k
nknLBsha

42

A weaker, but more general bound for the clique

• For clarity, let’s focus on the case k=2. The LBsha clique bound gives in
this case

nnnLBsha 66.01
3
2)2,(≈⎥⎥

⎤
⎢⎢
⎡ +=

• By combining LBsqrt, LBsha and some case analysis we developed a
new bound for clique instances of PH(*,k)-h. In the case k=2 our bound
gives:

nnnLBour 6.0
5

63)2,(≈⎥⎥
⎤

⎢⎢
⎡ +

=

• Our bound is asymptotically weaker. But it has a critical advantage:
the additive term is larger. This will help us generalise the bound to
non-clique instances!

43

• We can prove by induction on the compatibility graph that our clique
bound holds for all PH(*,2)-h instances, not just cliques. We use cliques
as the induction basis. Two critical observations:

Observation 1: If the compatibility graph of an PH(*,2)-h instance is not
a clique, then it can be disconnected into at least two non-empty
components by removing at most 2 genotypes.

2

0

2

0

1

0

Proof: If the compatibility
graph is not a clique, then
some two genotypes are non-
compatible i.e. in some column
one genotype has a 0, the
other has a 1…

…there will be at most two 2s
in that column. If the
genotypes with 2s in that
column are removed, there is
no path from the “1” genotype
to any of the “0” genotypes in
the resulting compatibility
graph: disconnection!

44

Observation 2: Suppose I remove two genotypes to disconnect the
compatibility graph. Summing lower bounds for the (at least) two resulting
components gives a lower bound for the original compatibility graph.

• We use Observation 2 to build the inductive lemma. Suppose we begin
with n genotypes, we remove 2 genotypes and we are left with two
components with n1 and n2 genotypes respectively i.e. n= n1+n2+2.

• To complete the induction we need to show that we need at least
(3n+6)/5 = (3(n1+n2+2) + 6)/5 = (3(n1+n2) + 12)/5 haplotypes.

• By induction the first component needs (3n1 + 6)/5 haplotypes, the
second component needs (3n2 + 6)/5, summing them together gives
(3(n1+n2)+12)/5 – we are finished!

• So our bound holds not only for cliques, but for all instances.

Splitting the compatibility graph into smaller pieces

45

• So, for PH(*,2)-h instances we know that at least (3n+6)/5 haplotypes
are needed. This bound also holds for MPPH(*,2)-h by the same analysis.

• But, given an instance of PH or MPPH with n genotypes, it is easy to see
that even a naïve solution never needs more than 2n haplotypes.

• So simply returning any feasible solution to PH(*,2)-h or MPPH(*,2)-h

guarantees an approximation ratio of 2n / ((3n+6)/5) < 3.333…

• Large improvements in approximation ratios are almost certainly possible
by developing ‘real’ approximation algorithms…

• We haven’t yet done this for MPPH but we have built a very simple ‘real’
approximation algorithm for PH(*,k)-h and PH(*,k)…

The lower bound alone gives us a constant-factor
approximation ratio

46

Strengthening the approximation ratio with a
“matching” algorithm

• We can strengthen the ratio for PH(*,2)-h from 3.33… to 2.75 as follows.

• Observe that, if the compatibility graph has an independent set of size N,
then 2N is also a valid lower bound. (In other words: no haplotype sharing is
possible between those N genotypes, so arbitrarily use 2 haplotypes per
genotype.)

• Algorithm: Take any maximum matching M in the compatibility graph.
Each matching edge involves two genotypes; these two genotypes can be
resolved by 3 haplotypes (because they can share one haplotype.) All
remaining genotypes can be resolved arbitrarily by 2 haplotypes each. Note
that because the matching is maximal, these n-2|M| remaining genotypes
must form an independent set i.e. give a lower bound of 2(n-2|M|).

• The 2.75 approximation algorithm is obtained by comparing our output to
the two lower bounds (3n+6)/5 and 2(n-2|M|), and taking the better of the
two.

47

• Comparing with the “independent set” lower bound is useful when
maximum matchings in the compatibility graph are very small e.g. star-like
graphs:

• Here n=13, so the standard lower bound gives (3n+6)/5 = 9 haplotypes.

• A maximum matching has only one edge, so the algorithm uses in total 3
haplotypes for the 2 covered genotypes, and then 2 each for the
remainder i.e. 3 + 2(13 - 2) = 25. Comparing to the (3n+6)/5 bound gives
an approx. ratio of 25/9 = 2.777… > 2.75.

• But the yellow genotypes form an independent set of size 11, giving a
lower bound of 22, so we get an approximation ratio of 25/22 < 2.75.

48

Some open problems…lots to do!

• Complexity of PH(*,2)?
• Complexity of MPPH(*,2)?
• Complexity of PH(3,2)?
• Complexity of MPPH(3,2)?
• Is MPPH(j,k) always of the same complexity as PH(j,k)?
• In how far is PH reducible to MPPH, and vice-versa?
• Approximation algorithms for MPPH(j,*) (they don’t yet exist)
• Adapting the simple “matching” approximation algorithm to MPPH
• Approximation algorithms for PH(j,k) and MPPH(j,k) that are a non-trivial
function of both j and k. Better ratios needed.
• How close are the solutions provided by the various PPH feasibility
algorithms (i.e. “produce ANY solution”) to optimal MPPH solutions?
• How feasible is it to simply search through the (implicit) set of all PPH
solutions?
• Using more biologically interesting restraints (e.g. galled networks, SNP
block partitioning models).

49

Some open problems…lots to do!

• Complexity of PH(*,2)?
• Complexity of MPPH(*,2)?
• Complexity of PH(3,2)?
• Complexity of MPPH(3,2)?
• Is MPPH(j,k) always of the same complexity as PH(j,k)?
• In how far is PH reducible to MPPH, and vice-versa?
• Approximation algorithms for MPPH(j,*) (they don’t yet exist)
• Adapting the simple “matching” approximation algorithm to MPPH
• Approximation algorithms for PH(j,k) and MPPH(j,k) that are a non-trivial
function of both j and k. Better ratios needed.
• How close are the solutions provided by the various PPH feasibility
algorithms (i.e. “produce ANY solution”) to optimal MPPH solutions?
• How feasible is it to simply search through the (implicit) set of all PPH
solutions?
• Using more biologically interesting restraints (e.g. galled networks, SNP
block partitioning models).

Thanks for listening!

	Beaches of islands of tractability: Hardness results, exact algorithms and approximation algorithms for parsimony and minimum
	SNPs and Haplotyping (1)
	SNPs and Haplotyping (2)
	SNPs and Haplotyping (2)
	SNPs and Haplotyping (3)
	SNPs and Haplotyping (4)
	Parsimony Haplotyping (PH)
	Adding a phylogenetic restriction to the PH model
	Bounded instances of PH and MPPH
	Compatibility and consistency
	The PH(*,1) compatibility graph has a special structure
	In MPPH(*,1) some resolutions are forbidden…
	Reducing MPPH(*,1) to PH(*,1) by discouraging forbidden resolutions
	MPPH(*,2) on clique instances
	Foundations for the MPPH(*,2)-clique algorithm
	Critical observations
	Example of restricted compatibility graph
	Step 1: Where degree-2 vertices can be resolved as the sum of their two adjacent edge haplotypes, do that.
	Step 2: Resolve genotypes that are adjacent to edge haplotypes added in the previous step (i.e. in this case where yellow vert
	Step 2: Resolve genotypes that are adjacent to edge haplotypes added in the previous step (i.e. in this case where yellow vert
	Step 3: Unless all components are ‘bad’, or no black genotypes left, add all-0 haplotype and use it to resolve remaining black
	Step 3: Unless all components are ‘bad’, or no black genotypes left, add all-0 haplotype and use it to resolve remaining black
	Step 4: Each genotype that is still unresolved but adjacent to an edge haplotype already in the solution, resolve it using tha
	Step 4: Each genotype that is still unresolved but adjacent to an edge haplotype already in the solution, resolve it using tha
	Step 5: Take a maximum matching on the remaining yellow genotypes and add the corresponding edge haplotypes…
	Step 5: Take a maximum matching on the remaining yellow genotypes and add the corresponding edge haplotypes…done.
	Step 6: Finally, resolve each remaining isolated genotype using an arbitrary edge haplotype (plus one other haplotype.)
	Solving/approximating PH and MPPH
	Some open problems…lots to do!
	Some open problems…lots to do!

