Beaches of islands of tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyping problems

Leo van Iersel ${ }^{1}$, J udith Keijsper ${ }^{1}$, Steven Kelk², Leen Stougie ${ }^{12}$
(1) Technische Universiteit Eindhoven (TU/e)
(2) Centrum voor Wiskunde en Informatica (CWI), Amsterdam

Email: S.M.Kelk@cwi.nl
Web: http://homepages.cwi.nl/~kelk

Introduction

- Parsimony Haplotyping (PH)

- A genotype is modelled as a string over the alphabet $\{0,1,2\}$.
- A haplotype is modelled as a string over the alphabet $\{0,1\}$.
- Two haplotypes h_{1}, h_{2} resolve a genotype g iff:-
$>$ At each site where g has a $0, \mathrm{~h}_{1}$ and h_{2} both have a 0 ;
$>$ At each site where g has a $1, \mathrm{~h}_{1}$ and h_{2} both have a 1 ;
$>$ At each site where g has a $2, h_{1}$ and h_{2} are different i.e. $0 / 1$ or $1 / 0$.
- If g is resolved by h_{1} and h_{2} we write $g=h_{1}+h_{2}$. But in general a genotype may be resolved by many different pairs of haplotypes.
- This leads to a natural optimisation problem...

Parsimony Haplotyping (PH)

Input: A set of n genotypes G, each of length m;
Output: The smallest possible set of length-m haplotypes H such that each genotype is resolved by some pair of the haplotypes (in which case we say that H resolves G.)

- Toy example: suppose the input G is: 122, 201, 022.
- A smallest possible set of haplotypes that resolves G has size 4, e.g. 101, 001, 110, 010.

$$
\begin{array}{lll}
101 & 001 & 010 \\
110+ & 101+ & \begin{array}{l}
001+ \\
\\
\\
\end{array} \\
\hline 122 & 022
\end{array}
$$

Adding a phylogenetic restriction to the PH model

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A set of n genotypes G, each of length m
Output: The smallest possible set of length-m haplotypes H such that each genotype is resolved by some pair of the haplotypes and such that the haplotypes H permit a perfect phylogeny. Or ‘null’ if no solutions exist.

- A set of haplotypes permits an (undirected) perfect phylogeny iff the haplotypes can be placed at the leaves of an unrooted evolutionary tree, where each site mutates at most once.
- Well-known fact: assuming the haplotypes H are arranged as the rows of a matrix, H permits a perfect phylogeny iff the following forbidden submatrix F does not appear:

Bounded instances of PH and MPPH

- Much work has been done on PH, but very little on MPPH. Both problems are, in general, NP-hard. (The problem of determining whether ANY perfect phylogeny solution exists, PPH, is linear-time solvable.)
- Inspired by (amongst others) the paper "Islands of tractability for parsimony haplotyping" (Sharan, Halldórsson, Istrail - 2005) we wanted to explore the interface between 'hard' and 'easy' instances of these problems.
- $\mathrm{PH}(\mathrm{j}, \mathrm{k})$ is the PH problem where each genotype has at most $\mathrm{j} 2 s$ per row, and (assuming the input genotypes are given as the rows of a matrix) at most k 2 s per column.
- A '*' denotes no restriction e.g. $\mathrm{PH}(3, *)$ is the problem with no restriction on the number of 2 s per column, but at most three 2 s per genotype.
- Same definition for MPPH.

Before and after our paper

Parsimony Haplotyping (PH)

- $\mathrm{PH}(4,3)$ is APX-hard (Sharan, Halldórsson, Istrail - 2005)
- $\mathrm{PH}(3, *)$ is APX-hard (Lancia, Pinotti, Rizzi - 2004.)
- $\mathrm{PH}(2, *)$ is in P (Lancia et al, independently Cilibrasi et al - 2005.)
- $\mathrm{PH}(3,3)$ is APX-hard
- $\mathrm{PH}(*, 1)$ is in P
our results

Minimum Perfect Phylogeny Haplotyping (MPPH)

- NP-hard in general (Bafna, Gusfield, Hannenhalli, Yooseph - 2004.)
- MPPH(3,3) is APX-hard.
- $\operatorname{MPPH}(2, *)$ is in P, by reduction to $\mathrm{PH}(2, *)$
- $\operatorname{MPPH}(*, 1)$ is in P , by reduction to $\mathrm{PH}(*, 1)$
- For both PH and MPPH, the main open problem left is $(*, 2)$.
- Sharan et al showed that $\mathrm{PH}(*, 2)$ is in P for 'clique' instances.
- We found the analogous result for MPPH(*,2). Surprisingly complicated!
- Here I sketch our polynomial-time algorithms for:
- PH(*,1)
- $\operatorname{MPPH}(*, 1)$
- MPPH(*,2) on ‘clique’ instances.

Compatibility and consistency

- Two genotypes g_{1} and g_{2} are said to be compatible iff at each site where they are non-equal, one of the two genotypes has a 2. For example 020 and 210 are compatible but 020 and 120 are not. (Incompatible genotypes can never share haplotypes.)
- The Compatibility Graph Comp(G) of a set of genotypes G has:
$>$ a vertex for every genotype g in G;
$>$ an edge between two vertices g_{1}, g_{2} iff g_{1} and g_{2} are compatible.
- A haplotype h is said to be consistent with g iff at each site where g and h are non-equal, g has a 2 . For example 010 is consistent with 022 but 110 is not. If g_{1} and g_{2} are compatible and h is consistent with both, we write $g_{1} \sim_{h} g_{2}$.

The PH(*, 1) compatibility graph has a special structure

In PH(*,1), the following facts hold:
(1) If two genotypes g_{1} and g_{2} are compatible, then there is precisely one haplotype h that is consistent with both of them. (At each column, read off the non-2 element.) So each edge in Comp(G) corresponds to a unique haplotype.
(2) The compatibility graph $\operatorname{Comp}(G)$ is a 1-sum of cliques, and is thus chordal.

Related to (1), the following is also true:
(3) Given any mutually compatible set of genotypes (which thus appear as a clique c in the compatibility graph), there is precisely one haplotype that is consistent with all of them. (At each column, read off the non-2 element.) We call this the clique haplotype h_{c} for that clique c.

Clique haplotype for red clique (i.e. h_{1}) is: 0011001
Clique haplotype for blue clique (i.e. h_{2}) is: 0010001
Clique haplotype for green clique (i.e. h_{3}) is: 1000001

Algorithm idea:

- The graph Comp(G) is chordal, and thus has a simplicial vertex. (A vertex whose closed neighbourhood is a clique.) Removing a simplicial vertex (and its incident edges) still leaves a chordal graph.
- We build the solution H by repeatedly 'peeling' vertices away from Comp(G), each time adding haplotypes to a haplotype set H^{\prime} (that is initially empty.) Specifically:
- At every iteration, locate a simplicial vertex (genotype) g. Depending on which haplotypes are already in H', add (at most) two haplotypes h_{1} and h_{2} (such that $g=h_{1}+h_{2}$) to H^{\prime}, and then remove g and its incident edges from Comp(G).

Repeat until Comp(G) is empty. Return H' as the final solution H.

- But, for each g , how do we decide which h_{1} and h_{2} to add to H'? Tempting to always use the clique haplotypes, but that's not always optimal...

Try each of the following steps in order and stop once a step has been executed. (h_{c} is the clique haplotype corresponding to g, defined at the start of the algorithm.)

1. If g has no $2 s$, simply add g to H^{\prime}.
2. If g is already resolved by some pair of haplotypes in H', there's no need to add new haplotypes to H^{\prime}.
3. If just adding the clique haplotype of g to H^{\prime} allows H^{\prime} to resolve g , do it.
4. If just adding some non-clique haplotype to H^{\prime} allows H^{\prime} to resolve g , do it.
5. If g is not an isolated vertex, add $\left\{h_{c^{\prime}} h\right\}$ to H^{\prime} (where $g=h_{c}+h$.)
6. Add any two haplotypes $\mathrm{h}_{1}, \mathrm{~h}_{2}$ to H^{\prime} such that $\mathrm{g}=\mathrm{h}_{1}+\mathrm{h}_{2}$.

Optimality of algorithm proved by induction. (Not given here.)

In MPPH(*, 1) some resolutions are forbidden...

0	0
0	1
1	0
2	2

Two columns in G

= FORBIDDEN RESOLUTION
= SAFE RESOLUTION

Corresponding
columns in H

Reducing MPPH(*, 1) to PH(*, 1) by discouraging forbidden resolutions

- In $\mathrm{PH}(*, 1)$, there will - for each pair of columns - be at most one row that is 22 , and if such a row exists there will be no other 2 s in those columns.
- Idea: to reduce $\operatorname{MPPH}(*, 1)$ to $\mathrm{PH}(*, 1)$, we have to discourage such rows from resolving the forbidden way.
- We do this by adding, for each pair of columns where a 22 can be seen, a 'blocking' column that biases resolutions in favour of the safe way.

Idea is that, within $\operatorname{PH}(*, 1)$, the 22 might still choose the forbidden resolution (e.g. 00/11 in this case) but the haplotypes used to do this cannot be shared by any other genotypes, because of the extra column. So just as good, if not better, to choose the safe resolution. So (assuming feasibility) there exist optimal solutions to $\operatorname{PH}(*, 1)$ where all such 22 resolutions are safe.

MPPH(*,2) on clique instances

- Sharan et al showed that $\mathrm{PH}(*, 2)$ is in P if the compatibility graph is a clique i.e. if all genotypes are mutually compatible.
- We have proved the same for $\operatorname{MPPH}(*, 2)$.
- Surprisingly complicated! Main complication is that, unlike the $\mathrm{PH}(*, 2)$ case, using the all-0 haplotype can sometimes cause forbidden resolutions.
- Here I demonstrate the most important ideas/steps behind the algorithm.

Foundations for the MPPH(*,2)-clique algorithm

- We can assume (by a relabelling argument) that the input matrix is restricted to $\{0,2\}$.
- If there are 3 or more genotypes in the input, the only haplotype that is consistent with all genotypes is the all-0 haplotype (because every column must contain a 0 .)
- The restricted compatibility graph $\operatorname{ResComp(G)}$ is defined as follows:-
$>$ A vertex for every genotype g;
$>$ An edge between two genotypes g_{1} and g_{2} iff there exists some haplotype h not equal to the all-0 haplotype, such that $g_{1} \sim_{h} g_{2}$.
(Equivalently, iff there exists some column where g_{1} and g_{2} both have 2 s .)
- For an edge (g_{1}, g_{2}) in ResComp(G), define the edge haplotype for that edge as the haplotype having 1 s in columns where g_{1} and g_{2} both have a 2 , and $0 s$ everywhere else. (These are useful for avoiding the forbidden submatrix!)

Critical observations

1. If the input G does permit solutions, then every vertex in the restricted compatibility graph has degree at most 2 i.e. consists of paths, cycles and isolated vertices.
2. It is never permitted to resolve a degree- 2 vertex in the restricted compatibility graph with the all-0 haplotype.
3. If you resolve a genotype g with haplotypes h_{1} and h_{2}, and h_{1} and h_{2} are both consistent with other haplotypes, then h_{1} and h_{2} are uniquely defined (and, for deg-2 vertices, are equal to the adjacent edge haplotypes.)
4. Genotypes that cannot share both their haplotypes, can be thought of as having at least one private haplotype that

The 22 here must not be resolved 00/11. no other genotypes can share.

Example of restricted compatibility graph

Vertices that in the beginning are degree-2 are coloured yellow. These can never be resolved using the all-0 haplotype!

Step 1: Where degree-2 vertices can be resolved as the sum of their two adjacent edge haplotypes, do that.

A red edge denotes that the corresponding edge haplotype has been put in the solution. Resolved genotypes are also shown in red.

Step 2: Resolve genotypes that are adjacent to edge haplotypes added in the previous step (i.e. in this case where yellow vertices are next to red edges)

Step 2: Resolve genotypes that are adjacent to edge haplotypes added in the previous step (i.e. in this case where yellow vertices are next to red edges), done

The new red edges, representing the newly added haplotypes, will be private haplotypes and thus cannot be shared by any other genotypes (symbolised here by the edge leaving the vertex at an angle.)

$\mathrm{O}-\mathrm{O}$

Step 3: Unless all components are 'bad', or no black genotypes left, add all-O haplotype and use it to resolve remaining black genotypes

Step 3: Unless all components are 'bad', or no black genotypes left, add all-O haplotype and use it to resolve remaining black genotypes. . .done!

Step 4: Each genotype that is still unresolved but adjacent to an edge haplotype already in the solution, resolve it using that edge haplotype...

Step 4: Each genotype that is still unresolved but adjacent to an edge haplotype already in the solution, resolve it using that edge haplotype. . .done.

- Complexity of $\mathrm{PH}(*, 2)$?
- Complexity of MPPH(*,2)?
- Complexity of $\mathrm{PH}(3,2)$?
- Complexity of $\operatorname{MPPH}(3,2)$?
- Is MPPH(j, k) always of the same complexity as $\mathrm{PH}(\mathrm{j}, \mathrm{k})$?
- In how far is PH reducible to MPPH, and vice-versa?
- Approximation algorithms for $\operatorname{MPPH}(\mathrm{j}, *)$ for fixed j
- Using the fact that k is fixed to improve the 2^{j-1} approximation algorithms for $\mathrm{PH}(\mathrm{j}, \mathrm{k})$
- How close are the solutions provided by the various PPH feasibility algorithms (i.e. "produce ANY solution") to optimal MPPH solutions?
- How feasible is it to simply search through the (implicit) set of all PPH solutions?
- Using more biologically interesting restraints (e.g. galled networks, SNP block partitioning models)
- Complexity of $\mathrm{PH}(*, 2)$?
- Complexity of MPPH(*,2)?
- Complexity of $\mathrm{PH}(3,2)$?
- Complexity of $\operatorname{MPPH}(3,2)$?
- Is MPPH(j, k) always of the same complexity as $\mathrm{PH}(\mathrm{j}, \mathrm{k})$?
- In how far is PH reducible to MPPH, and vice-versa?
- Approximation algorithms for $\operatorname{MPPH}(\mathrm{j}, *)$ for fixed j
- Using the fact that k is fixed to improve the 2^{j-1} approximation algorithms for $\mathrm{PH}(\mathrm{j}, \mathrm{k})$
- How close are the solutions provided by the various PPH feasibility algorithms (i.e. "produce ANY solution") to optimal MPPH solutions?
- How feasible is it to simply search through the (implicit) set of all PPH solutions?
- Using more biologically-interesting restraints (e.g. galled networks, SNP block partitioning models)

Steps 5: Take a maximum matching on the remaining yellow genotypes and add the corresponding edge haplotypes...

Step 5: Take a maximum matching on the remaining yellow genotypes and add the corresponding edge haplotypes. . .done.

Step 6: Finally, resolve each remaining isolated genotype using an arbitrary edge haplotype (plus one other haplotype.)

