
Beaches of islands of tractability:
Algorithms for parsimony and minimum
perfect phylogeny haplotyping problems

Leo van Iersel1, Judith Keijsper1, Steven Kelk2, Leen Stougie12

(1) Technische Universiteit Eindhoven (TU/e)
(2) Centrum voor Wiskunde en Informatica (CWI), Amsterdam

Email: S.M.Kelk@cwi.nl
Web: http://homepages.cwi.nl/~kelk

2

Introduction

• Parsimony Haplotyping (PH)

• A genotype is modelled as a string over the alphabet {0,1,2}.

• A haplotype is modelled as a string over the alphabet {0,1}.

• Two haplotypes h1, h2 resolve a genotype g iff:-

At each site where g has a 0, h1 and h2 both have a 0;

At each site where g has a 1, h1 and h2 both have a 1;

At each site where g has a 2, h1 and h2 are different i.e. 0/1 or 1/0.

• If g is resolved by h1 and h2 we write g = h1 + h2. But in general a
genotype may be resolved by many different pairs of haplotypes.

• This leads to a natural optimisation problem…

3

Parsimony Haplotyping (PH)

Input: A set of n genotypes G, each of length m;

Output: The smallest possible set of length-m haplotypes H such that each
genotype is resolved by some pair of the haplotypes (in which case we
say that H resolves G.)

• Toy example: suppose the input G is: 122, 201, 022.

• A smallest possible set of haplotypes that resolves G has size 4, e.g. 101,
001, 110, 010.

101
110+
122

001
101+
201

010
001+
022

4

Adding a phylogenetic restriction to the PH model

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A set of n genotypes G, each of length m

Output: The smallest possible set of length-m haplotypes H such that each
genotype is resolved by some pair of the haplotypes and such that the
haplotypes H permit a perfect phylogeny. Or ‘null’ if no solutions exist.

• A set of haplotypes permits an (undirected) perfect phylogeny iff the
haplotypes can be placed at the leaves of an unrooted evolutionary tree,
where each site mutates at most once.

• Well-known fact: assuming the haplotypes H are arranged as the rows
of a matrix, H permits a perfect phylogeny iff the following forbidden
submatrix F does not appear:

00
01
10
11

5

• Much work has been done on PH, but very little on MPPH. Both problems are,
in general, NP-hard. (The problem of determining whether ANY perfect
phylogeny solution exists, PPH, is linear-time solvable.)

• Inspired by (amongst others) the paper “Islands of tractability for parsimony
haplotyping” (Sharan, Halldórsson, Istrail - 2005) we wanted to explore the
interface between ‘hard’ and ‘easy’ instances of these problems.

• PH(j,k) is the PH problem where each genotype has at most j 2s per row, and
(assuming the input genotypes are given as the rows of a matrix) at most k 2s
per column.

• A ‘*’ denotes no restriction e.g. PH(3,*) is the problem with no restriction on
the number of 2s per column, but at most three 2s per genotype.

• Same definition for MPPH.

Bounded instances of PH and MPPH

6

Before and after our paper

Parsimony Haplotyping (PH)

• PH(4,3) is APX-hard (Sharan, Halldórsson, Istrail – 2005)

• PH(3,*) is APX-hard (Lancia, Pinotti, Rizzi - 2004.)

• PH(2,*) is in P (Lancia et al, independently Cilibrasi et al - 2005.)

• PH(3,3) is APX-hard

• PH(*,1) is in P

Minimum Perfect Phylogeny Haplotyping (MPPH)

• NP-hard in general (Bafna, Gusfield, Hannenhalli, Yooseph - 2004.)

• MPPH(3,3) is APX-hard.

• MPPH(2,*) is in P, by reduction to PH(2,*)

• MPPH(*,1) is in P, by reduction to PH(*,1)

our results

our results

7

• For both PH and MPPH, the main open problem left is (*,2).

• Sharan et al showed that PH(*,2) is in P for ‘clique’ instances.

• We found the analogous result for MPPH(*,2). Surprisingly complicated!

• Here I sketch our polynomial-time algorithms for:

• PH(*,1)

• MPPH(*,1)

• MPPH(*,2) on ‘clique’ instances.

8

• Two genotypes g1 and g2 are said to be compatible iff at each site where
they are non-equal, one of the two genotypes has a 2. For example 020 and
210 are compatible but 020 and 120 are not. (Incompatible genotypes can
never share haplotypes.)

• The Compatibility Graph Comp(G) of a set of genotypes G has:
a vertex for every genotype g in G;
an edge between two vertices g1, g2 iff g1 and g2 are compatible.

• A haplotype h is said to be consistent with g iff at each site where g and h
are non-equal, g has a 2. For example 010 is consistent with 022 but 110 is
not. If g1 and g2 are compatible and h is consistent with both, we write
g1 ~h g2.

Compatibility and consistency

9

0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1

g1

g2

g3

g4

g5

g6

g7

g1

g2

g7

g3

g4

g6

g5

Example of an input
genotype matrix G

Compatibility graph
Comp(G)

10

The PH(*,1) compatibility graph has a special structure

In PH(*,1), the following facts hold:

(1) If two genotypes g1 and g2 are compatible, then there is precisely one
haplotype h that is consistent with both of them. (At each column, read off
the non-2 element.) So each edge in Comp(G) corresponds to a unique
haplotype.

(2) The compatibility graph Comp(G) is a 1-sum of cliques, and is thus chordal.

Related to (1), the following is also true:

(3) Given any mutually compatible set of genotypes (which thus appear as a
clique c in the compatibility graph), there is precisely one haplotype that is
consistent with all of them. (At each column, read off the non-2 element.)
We call this the clique haplotype hc for that clique c.

11

0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1

g1

g2

g3

g4

g5

g6

g7

g1

g2

g3

h1

h1 h2

h2 h2

h2
h2

h2 g6

g5

g7 g4

Clique haplotype for red clique (i.e. h1) is: 0011001

Clique haplotype for blue clique (i.e. h2) is: 0010001

Clique haplotype for green clique (i.e.h3) is: 1000001

h1

h3

12

Algorithm idea:

• The graph Comp(G) is chordal, and thus has a simplicial vertex. (A vertex
whose closed neighbourhood is a clique.) Removing a simplicial vertex (and
its incident edges) still leaves a chordal graph.

• We build the solution H by repeatedly ‘peeling’ vertices away from
Comp(G), each time adding haplotypes to a haplotype set H’ (that is initially
empty.) Specifically:

• At every iteration, locate a simplicial vertex (genotype) g. Depending on
which haplotypes are already in H’, add (at most) two haplotypes h1 and h2
(such that g = h1 + h2) to H’, and then remove g and its incident edges from
Comp(G).

Repeat until Comp(G) is empty. Return H’ as the final solution H.

• But, for each g, how do we decide which h1 and h2 to add to H’? Tempting
to always use the clique haplotypes, but that’s not always optimal...

13

Try each of the following steps in order and stop once a step has been
executed. (hc is the clique haplotype corresponding to g, defined at the
start of the algorithm.)

1. If g has no 2s, simply add g to H’.

2. If g is already resolved by some pair of haplotypes in H’, there’s no need to
add new haplotypes to H’.

3. If just adding the clique haplotype of g to H’ allows H’ to resolve g, do it.

4. If just adding some non-clique haplotype to H’ allows H’ to resolve g, do it.

5. If g is not an isolated vertex, add {hc, h} to H’ (where g = hc + h.)

6. Add any two haplotypes h1, h2 to H’ such that g = h1 + h2.

Optimality of algorithm proved by induction. (Not given here.)

14

In MPPH(*,1) some resolutions are forbidden…

0 0

0 1

1 0

2 2

0 0

0 1

1 0

0 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

0 1

1 0

Two columns
in G

0 0

0 1

1 0

resolve

Corresponding
columns in H

Corresponding
columns in H

Eliminate
dupicates

Eliminate
dupicates

= FORBIDDEN
RESOLUTION

= SAFE
RESOLUTION

15

• In PH(*,1), there will – for each pair of columns – be at most one row that
is 22, and if such a row exists there will be no other 2s in those columns.

• Idea: to reduce MPPH(*,1) to PH(*,1), we have to discourage such rows
from resolving the forbidden way.

• We do this by adding, for each pair of columns where a 22 can be seen, a
‘blocking’ column that biases resolutions in favour of the safe way.

Reducing MPPH(*,1) to PH(*,1) by discouraging
forbidden resolutions

0 0

0 1

1 0

2 2

0 0 0

0 1 1

1 0 1

2 2 1

becomes

Idea is that, within PH(*,1), the 22
might still choose the forbidden
resolution (e.g. 00/11 in this case)
but the haplotypes used to do this
cannot be shared by any other
genotypes, because of the extra
column. So just as good, if not better,
to choose the safe resolution. So
(assuming feasibility) there exist
optimal solutions to PH(*,1) where all
such 22 resolutions are safe.

16

MPPH(*,2) on clique instances

• Sharan et al showed that PH(*,2) is in P if the compatibility graph is a clique
i.e. if all genotypes are mutually compatible.

• We have proved the same for MPPH(*,2).

• Surprisingly complicated! Main complication is that, unlike the PH(*,2) case,
using the all-0 haplotype can sometimes cause forbidden resolutions.

• Here I demonstrate the most important ideas/steps behind the algorithm.

17

• We can assume (by a relabelling argument) that the input matrix is restricted
to {0,2}.

• If there are 3 or more genotypes in the input, the only haplotype that is
consistent with all genotypes is the all-0 haplotype (because every column must
contain a 0.)

• The restricted compatibility graph ResComp(G) is defined as follows:-

A vertex for every genotype g;

An edge between two genotypes g1 and g2 iff there exists some
haplotype h not equal to the all-0 haplotype, such that g1 ~h g2.
(Equivalently, iff there exists some column where g1 and g2 both have 2s.)

• For an edge (g1,g2) in ResComp(G), define the edge haplotype for that edge
as the haplotype having 1s in columns where g1 and g2 both have a 2, and 0s
everywhere else. (These are useful for avoiding the forbidden submatrix!)

Foundations for the MPPH(*,2)-clique algorithm

18

1. If the input G does permit solutions, then every vertex in
the restricted compatibility graph has degree at most 2 i.e.
consists of paths, cycles and isolated vertices.

2. It is never permitted to resolve a degree-2 vertex in the
restricted compatibility graph with the all-0 haplotype.

3. If you resolve a genotype g with haplotypes h1 and h2,
and h1 and h2 are both consistent with other haplotypes,
then h1 and h2 are uniquely defined (and, for deg-2
vertices, are equal to the adjacent edge haplotypes.)

4. Genotypes that cannot share both their haplotypes, can be
thought of as having at least one private haplotype that
no other genotypes can share.

2 2 2

2 0 0

0 2 0

0 0 2

Critical observations

2 2

0 2

2 0

forbidden!

The 22 here must
not be resolved

00/11.

19

Example of restricted compatibility graph

Vertices that in the beginning are degree-2 are coloured yellow.
These can never be resolved using the all-0 haplotype!

20

Step 1: Where degree-2 vertices can be resolved as the
sum of their two adjacent edge haplotypes, do that.

A red edge denotes that the corresponding edge haplotype has been
put in the solution. Resolved genotypes are also shown in red.

h1

g1

h2

h3 h4 h5

g2 g3

g1 = h1 + h2
g2 = h3 + h4
g3 = h4 + h5

21

Step 2: Resolve genotypes that are adjacent to edge
haplotypes added in the previous step (i.e. in this case
where yellow vertices are next to red edges)

22

The new red edges, representing the newly added haplotypes, will be
private haplotypes and thus cannot be shared by any other genotypes

(symbolised here by the edge leaving the vertex at an angle.)

Step 2: Resolve genotypes that are adjacent to edge
haplotypes added in the previous step (i.e. in this case
where yellow vertices are next to red edges), done

23

24

Step 3: Unless all components are ‘bad’, or no black
genotypes left, add all-0 haplotype and use it to resolve
remaining black genotypes

25

Step 3: Unless all components are ‘bad’, or no black
genotypes left, add all-0 haplotype and use it to resolve
remaining black genotypes…done!

(all-0)

(all-0) (all-0)

(all-0)

26

Step 4: Each genotype that is still unresolved but
adjacent to an edge haplotype already in the solution,
resolve it using that edge haplotype…

(all-0)

(all-0)

(all-0)

27

Step 4: Each genotype that is still unresolved but
adjacent to an edge haplotype already in the solution,
resolve it using that edge haplotype…done.

(all-0)

(all-0) (all-0)

(all-0)

28

(all-0)

(all-0) (all-0)

(all-0)

29

Open problems…lots to do!

• Complexity of PH(*,2)?
• Complexity of MPPH(*,2)?
• Complexity of PH(3,2)?
• Complexity of MPPH(3,2)?
• Is MPPH(j,k) always of the same complexity as PH(j,k)?
• In how far is PH reducible to MPPH, and vice-versa?
• Approximation algorithms for MPPH(j,*) for fixed j
• Using the fact that k is fixed to improve the 2j-1 approximation
algorithms for PH(j,k)
• How close are the solutions provided by the various PPH feasibility
algorithms (i.e. “produce ANY solution”) to optimal MPPH solutions?
• How feasible is it to simply search through the (implicit) set of all PPH
solutions?
• Using more biologically interesting restraints (e.g. galled networks,
SNP block partitioning models)

30

Open problems…lots to do!

• Complexity of PH(*,2)?
• Complexity of MPPH(*,2)?
• Complexity of PH(3,2)?
• Complexity of MPPH(3,2)?
• Is MPPH(j,k) always of the same complexity as PH(j,k)?
• In how far is PH reducible to MPPH, and vice-versa?
• Approximation algorithms for MPPH(j,*) for fixed j
• Using the fact that k is fixed to improve the 2j-1 approximation
algorithms for PH(j,k)
• How close are the solutions provided by the various PPH feasibility
algorithms (i.e. “produce ANY solution”) to optimal MPPH solutions?
• How feasible is it to simply search through the (implicit) set of all PPH
solutions?
• Using more biologically-interesting restraints (e.g. galled networks,
SNP block partitioning models)

Thankyou for listening!

31

(all-0)

(all-0) (all-0)

(all-0)

Steps 5: Take a maximum matching on the remaining
yellow genotypes and add the corresponding edge
haplotypes…

32

(all-0)

(all-0) (all-0)

(all-0)

Step 5: Take a maximum matching on the remaining
yellow genotypes and add the corresponding edge
haplotypes…done.

33

(all-0)

(all-0) (all-0)

(all-0)

Step 6: Finally, resolve each remaining isolated
genotype using an arbitrary edge haplotype (plus one
other haplotype.)

	Beaches of islands of tractability: Algorithms for parsimony and minimum perfect phylogeny haplotyping problems
	Introduction
	Adding a phylogenetic restriction to the PH model
	Bounded instances of PH and MPPH
	Compatibility and consistency
	The PH(*,1) compatibility graph has a special structure
	In MPPH(*,1) some resolutions are forbidden…
	Reducing MPPH(*,1) to PH(*,1) by discouraging forbidden resolutions
	MPPH(*,2) on clique instances
	Foundations for the MPPH(*,2)-clique algorithm
	Critical observations
	Example of restricted compatibility graph
	Step 1: Where degree-2 vertices can be resolved as the sum of their two adjacent edge haplotypes, do that.
	Step 2: Resolve genotypes that are adjacent to edge haplotypes added in the previous step (i.e. in this case where yellow vert
	Step 2: Resolve genotypes that are adjacent to edge haplotypes added in the previous step (i.e. in this case where yellow vert
	Step 3: Unless all components are ‘bad’, or no black genotypes left, add all-0 haplotype and use it to resolve remaining black
	Step 3: Unless all components are ‘bad’, or no black genotypes left, add all-0 haplotype and use it to resolve remaining black
	Step 4: Each genotype that is still unresolved but adjacent to an edge haplotype already in the solution, resolve it using tha
	Step 4: Each genotype that is still unresolved but adjacent to an edge haplotype already in the solution, resolve it using tha
	Open problems…lots to do!
	Open problems…lots to do!
	Steps 5: Take a maximum matching on the remaining yellow genotypes and add the corresponding edge haplotypes…
	Step 5: Take a maximum matching on the remaining yellow genotypes and add the corresponding edge haplotypes…done.
	Step 6: Finally, resolve each remaining isolated genotype using an arbitrary edge haplotype (plus one other haplotype.)

