
An Improved Kernel for the Flip Distance Problem on Simple Convex
Polygons✩

Miguel Bosch Calvoa,b, Steven Kelkb

aIDSIA, USI-SUPSI, Switzerland.
bDepartment of Data Science and Engineering, Maastricht University, The Netherlands.

Abstract

The complexity of computing the flip distance between two triangulations of a simple convex polygon is
unknown. Here we approach the problem from a parameterized complexity perspective and improve upon
the 2k kernel of Lucas [10]. Specifically, we describe a kernel of size 4k

3 and then show how it can be improved
to (1+ϵ)k for every constant ϵ > 0. By ensuring that the kernel consists of a single instance our result yields
a kernel of the same magnitude (up to additive terms) for the almost equivalent rotation distance problem
on rooted, ordered binary trees. The earlier work of Lucas left the kernel as a disjoint set of instances,
potentially allowing very minor differences in the definition of the size of instances to accumulate, causing
a constant-factor distortion in the kernel size when switching between flip distance and rotation distance
formulations. Our approach avoids this sensitivity. We have also undertaken experiments to understand
how much reduction is achieved by our kernel in practice.

Keywords: Parameterized Complexity, Kernel, Triangulation, Simple Convex polygons

1. Introduction

Triangulating a set of points on a plane is a com-
mon operation in computational geometry. The op-
eration of flipping a diagonal is defined as remov-
ing one edge of a triangulation, creating a convex
quadrangle, and then adding to the triangulation
the opposing diagonal of that quadrangle, as seen
in Figure 1.

Figure 1: Flipping a diagonal of a triangulation of a simple
convex polygon.

The flip distance between two triangulations of
the same set of points on a plane is the minimum

✩A preliminary version of this article, without experimen-
tal section, appeared in the proceedings of CCCG2021.

number of flips needed to transform one triangula-
tion into another. Computing flip distance is NP-
hard, even for the case of simple polygons [1].

In this article we will be working in a more re-
stricted setup by considering only triangulations of
simple convex polygons. The complexity of the
problem is unknown. Indeed, there is a well known
correspondence - essentially, an equivalence - be-
tween this problem and the computation of rotation
distance between two rooted, ordered binary trees.
It has been an open question for several decades
whether rotation distance is polynomial-time solve-
able. Some of the results in this area have been
obtained using the rotation distance formulation,
but most of the work has been undertaken in the
flip distance formulation.

Here we adopt a parameterized complexity per-
spective; in particular, a kernelization perspective
[6]. Cleary et al. [3] proved that the problem is
fixed parameter tractable, by providing a 5k ker-
nel, where the parameter k is the flip distance. Lu-
cas [10] employed different reduction strategies to
obtain a kernel of size 2k. In this article we will
show how to improve upon the kernelization result
of Lucas. We describe a 4k

3 kernel and then extend

Preprint submitted to Elsevier May 19, 2022

the approach to yield a (1 + ϵ)k kernel for every
constant ϵ > 0; the running time grows sharply
in 1/ϵ but remains polynomial for fixed ϵ. Our
article extends the decomposition-based approach
of Lucas in two ways. We strengthen the bound
on the size of the kernel, and potentially lower
the flip distance, by solving small decomposed in-
stances to optimality. Secondly, we show how to
“reverse” the decomposition strategy adopted by
Lucas, thus merging the separate instances into a
single reduced instance at the end. This merging
step ensures that the size of the kernel remains (up
to additive terms) unchanged whether we view the
problem from the flip distance or rotation distance
perspective. As we note in the Discussion section,
this is not as straightforward for Lucas’ kernel re-
sult: there a subtle constant-factor distortion oc-
curs when switching from one formulation to the
other.
Finally, we conduct a number of experiments

to understand the way our kernelization algorithm
performs on synthetic data. We find that the re-
duced instances are substantially smaller than the
worst-case theoretical bound, and that the 4k

3 ker-
nel achieves significantly more reduction than Lu-
cas’ kernel without requiring any extra investment
in running time.

2. Preliminaries

We are working here with simple convex poly-
gons. Such a polygon can be viewed without loss of
generality as a simple cycle on n edges and n ver-
tices. A triangulation of a simple convex polygon
on n edges contains exactly n− 3 diagonals. Hence
a triangulation of a simple convex polygon can be
represented as a list of n−3 edges and two triangu-
lations are considered equal if the n− 3 edges (i.e.
the diagonals) are identical.
Thus, there is a finite number of triangulations

of simple convex polygons of a given size. Precisely,
the number of triangulations of a simple convex
polygon of size n is given by the (n − 2)th Cata-
lan number Cn = 1

n+1

(
2n
n

)
.

We define Pn as the set containing all triangu-
lations of simple convex polygons of size n. Thus
|Pn| = Cn−2. We abuse notation slightly and say
that (P, P ′) ∈ Pn if both P and P ′ are triangula-
tions of simple convex polygons of size n.
Henceforth, for the sake of brevity, we will re-

fer to triangulations of simple convex polygons as
triangulations or simply polygons.

Given (P, P ′) ∈ Pn, we call a shortest path
from P to P ′ to the sequence of polygons P =
P0, P1, P2, . . . , Pm = P ′ such that we can transform
Pi into Pi+1 by just flipping one diagonal and m is
the minimum among all possible sequences. Given
a pair of polygons (P, P ′) ∈ Pn, the flip distance
d(P, P ′) between P and P ′ is the length of a short-
est path from P to P ′.

One of the earliest results in this area is the upper
bound on flip distance proved by Culik et al. [4].
Precisely, the flip distance between two polygons
(P, P ′) ∈ Pn is at most 2n− 6 for all (P, P ′) ∈ Pn.
Later, Sleator et al. [12] improved the bound to
2n− 10 for all (P, P ′) ∈ Pn, n > 12, and by making
use of hyperbolic geometry proved that the bound
is tight.

Also, since every flip of a diagonal only affects
one diagonal, the flip distance between (P, P ′) is
at least the number of non-common diagonals of
(P, P ′) [10].

There is another result from Sleator et al. [12]
that is of importance to us. It implies that common
diagonals belong to every polygon of every shortest
path, and therefore that they should not be flipped
at any point: Given (P, P ′) ∈ Pn, if there is a com-
mon diagonal between P and P ′, then every short-
est path from P to P ′ does not flip that diagonal.

We now present a formal definition of the Pa-
rameterized Flip Distance problem, which is
the problem we will be addressing in this article:

Parameterized Flip Distance
Input: A pair of polygons (P, P ′) ∈ Pn and a
parameter k ∈ N.
Question: Is the flip distance between P and P ′

at most k?

As is standard in the study of kernelization,
we will apply polynomial-time reduction rules to
yield instances whose size is bounded by a function
purely of k. We omit a formal definition of kernel-
ization, referring to standard texts such as [6] for
more details. We emphasize that the size of an in-
stance, n, refers to the number of outer edges in the
polygons.

The kernel we propose uses some of the ideas pre-
sented by Lucas at [10] combined with new reduc-
tion rules to tighten the bound on the kernel, plus a
new merging step. Lucas’ idea is based on dividing
the original pair of polygons along their common
diagonals by using the results by Sleator et al. [12].
An example of such division is shown in Figure 2.

2

P P ′

P1
P2

P3

P4

P ′
1

P ′
2
P ′
3

P ′
4

Figure 2: An example of splitting a polygon pair (P, P ′)
along its common diagonals into m disjoint pairs. Here the
instances (P, P ′) have size 12, so (P, P ′) ∈ P12, and they
have 3 common diagonals, so they are divided into m = 4
disjoint pairs (P1, P ′

1), (P2, P ′
2), (P3, P ′

3), (P4, P ′
4).

We will first present the operations that allows
us to obtain a 4k

3 kernel and then we will extend
those ideas to derive the (1 + ϵ)k kernel.

3. Results

3.1. 4k
3 kernel

Lucas [10], using the results of Sleator et al. [12],
showed that given two polygons (P, P ′) ∈ Pn with
m− 1 common diagonals, we can create m disjoint
pairs of polygons (Pi, P

′
i), i ∈ [1,m] by dividing the

original polygons along their common diagonals, so
each common diagonal becomes an outer edge of
one of the instances (Pi, P

′
i) and each pair does not

have any common diagonal. Thus we derive the
following lemma:

Lemma 1. The flip distance of (P, P ′) ∈ Pn is
equal to the sum of the distances between all m
pairs (Pi, P

′
i) resulting from the division of (P, P ′)

along its m− 1 common diagonals, i.e. d(P, P ′) =∑m
i=1 d(Pi, P

′
i).

It is useful to apply the division along common
diagonals into m pairs to the parameterized version
of the problem, given by (P, P ′) ∈ Pn, k ∈ N.

Given a set of m pairs of polygons (Pi, P
′
i) ∈ Pni

,
let di be the number of diagonals of instance i, so
that di = ni − 3.
The upper bound of the problem of roughly 2n

can be applied to every pair, and the pairs do not

have any common diagonal, so we can deduce di ≤
d(Pi, P

′
i) ≤ 2di. Since d(P, P ′) =

∑
d(Pi, P

′
i) we

can output a trivial YES answer if
∑

di ≤ k/2,
and a trivial NO if

∑
di > k, so for all non-trivial

instances we have k/2 <
∑m

i=1 di ≤ k.
Now we present a trivial observation and a lemma

that will be useful to prove our final result.

Observation 1. A pair of quadrilaterals with no
common diagonals have distance 1. Similarly, a
pair of pentagons with no common diagonals have
distance 2.

Lemma 2. Given a set of m pairs of polygons
(Pi, P

′
i) ∈ Pni , we can build a pair of polygons

(P, P ′) ∈ Pn with n =
∑m

i=1 di + m + 2, and
d(P, P ′) =

∑m
i=1 d(Pi, P

′
i).

Proof. Given two pairs of polygons
(P1, P

′
1), (P2, P

′
2) with sets of outer edges {e11, e12,

. . . , e1n1
} and {e21, e22, . . . , e2n2

} we can create a pair
of polygons with edges:

{e11, e12, . . . , e1n1−1, e
2
1, e

2
2, . . . , e

2
n2−1}

We add to that polygon all diagonals present in
both (P1, P

′
1) and (P2, P

′
2), plus a diagonal δs in

place of e1n1
and e2n2

. It is clear that we can add
those diagonals and they will be non-crossing. We
can see an example of this operation in Figure 3.
This way we have a new pair of polygons (P, P ′)

in which the edges {e11, e12, . . . , e1n1−1, δs} induce
the polygons (P1, P

′
1) and {e21, e22, . . . , e2n2−1, δs} the

polygons (P2, P
′
2). Since δs is a common diago-

nal and thus is never flipped in a shortest path,
d(P, P ′) = d(P1, P

′
1)+d(P2, P

′
2). The size of (P, P

′)
is n1+n2−2 = d1+d2+4, and it has d1+d2+1 di-
agonals, of which at least one of them is common.
Repeated applications of this operation complete
the proof.

Theorem 3. There is a kernel of size 4k
3 + O(1)

for the Parameterized Flip Distance problem.
Specifically, given a pair of polygons (P, P ′) ∈ Pn

and a parameter k we can output in polynomial time
another pair of polygons (P ∗, P ∗′) of size at most
4k
3 + 2, and a parameter k′ ≤ k such that:

d(P, P ′) ≤ k ⇐⇒ d(P ∗, P ∗′) ≤ k′

Proof. Given (P, P ′) ∈ Pn, and a parameter k,
the following algorithm outputs a kernel of the
problem of size at most 4k

3 + 2.

3

P1

e11

e12

e13

e14 e15

e16

e17

e18

P2

e21

e22

e23 e24

e25

e26

P

e11
e12

e13

e14

e15
e16 e17

e21

e22

e23

e24
e25

δs

Figure 3: Given two pairs of polygons (P1, P ′
1) and

(P2, P ′
2) we can generate a new pair (P, P ′) that has

distance equal to the sum of the distances of the orig-
inal pair. In this example (P1, P ′

1) has 8 outer edges
{e11, e12, e13, e14, e15, e16, e17, e18} and (P2, P ′

2) has 6 outer edges
{e21, e22, e23, e24, e25, e26}, resulting in a pair (P, P ′) with 12
edges {e11, e12, e13, e14, e15, e16, e17, e21, e22, e23, e24, e25} (in this figure
only one of the polygons of the pair is shown since we oper-
ate identically with the other).

1. Divide (P, P ′) along their common diagonals to
obtain m pairs of polygons (Pi, P

′
i) and discard

all pairs that have only three edges, because
their distance is 0. Now we have m′ pairs, with
m′ ≤ m, so we re-number the pairs to have
(Pi, P

′
i), i ∈ [1,m′].

2. Making use of Observation 1, discard all pairs
with four edges and reduce the parameter k by
one per each pair removed that way. Proceed
the same way with pairs of five edges reducing
the parameter by two instead and renumber
the pairs as we did in the previous step. We
get a new parameter k′ ≤ k.

3. If
∑

di > k′ output NO. If
∑

di ≤ k′/2 output
YES.

4. Use Lemma 2 to create a new polygon
(P ∗, P ∗′) from all the remaining pairs. The
new instance is defined by (P ∗, P ∗′) and k′.

Since we have removed all pairs with di < 3, each
pair has at least 3 diagonals, none of them common,
so m is at most k′/3, or otherwise

∑
di > k′, and

we could have output a trivial NO answer. Also,
we have that k′/2 <

∑m
i=1 di ≤ k′, and by mak-

ing use of Lemma 2 to obtain the pair of polygons
(P ∗, P ∗′), they will be of size

∑m
i=1 di + m + 2 ≤

k′ + k′/3 + 2 ≤ 4k/3 + 2.
Also, from Lemma 1, Lemma 2 and Observa-

tion 1 it is clear that d(P, P ′) ≤ k if and only if
d(P ∗, P ∗′) ≤ k′, and Lucas [9] showed that the first
step can be done in O(n2) time, while the last step
can be done in time O(n), completing the proof.

3.2. (1 + ϵ)k-kernel

In this section we will show a procedure that al-
lows us to obtain a kernel of size (1 + ϵ)k + O(1)
in time that is polynomial in n when ϵ > 0 is con-
stant. The procedure is based on the algorithm of
the previous section and on the trivial exponential-
time algorithm that allows us to solve an instance of
size n in time O(n2n) by trying all possible diagonal
flips recursively.

Theorem 4. Given a pair of polygons (P, P ′) ∈
Pn and a parameter k, we can output another pair
of polygons (P ∗, P ∗′) of size at most (1 + ϵ)k + 2
and a parameter k′ ≤ k such that:

d(P, P ′) ≤ k ⇐⇒ d(P ∗, P ∗′) ≤ k′

In time O(n2 + f(ϵ)n), where f(ϵ) is a function
that only depends on ϵ.

Proof. Given two polygons (P, P ′) ∈ Pn, a pa-
rameter k ∈ N and some ϵ > 0, apply steps 1 and
2 of the algorithm described in Theorem 3. Then
solve all instances of size less than 1/ϵ + 3, i.e. in-
stances that have fewer than 1/ϵ diagonals, using
the trivial exponential-time algorithm. We can do
this in time O((1/ϵ)2/ϵ ·n), (because there can be at
most n− 2 instances after splitting common diago-
nals) and discard all pairs solved this way, reducing
the parameter k by the sum of the flip distances of
the pairs solved this way. Finally, apply steps 3 and
4 of the algorithm.

Now each remaining pair before step 3 will have
at least 1/ϵ diagonals, so m must be at most ϵk′,
by a similar reasoning as in Theorem 3. Then we
have that the polygons (P ∗, P ∗′) will have size at
most

∑m
i=1 di +m+ 2 ≤ k′+ ϵk′+2 ≤ (1+ ϵ)k+2.

Since the steps common with the 4k
3 kerneliza-

tion algorithm can be done in time O(n2), and
the additional time spent on solving small instances
is at most O((1/ϵ)2/ϵ · n), the total time required
to produce the kernel is O(n2 + (1/ϵ)2/ϵ · n) =
O(n2 + f(ϵ)n), as we wanted to prove.

We note that by using the recent FPT algorithm
of [5] instead of the trivial exponential-time algo-
rithm, we can solve an instance of size less than 1/ϵ

4

in time O(321/ϵ · poly(1/ϵ)) instead of O((1/ϵ)2/ϵ),
which is a significant improvement.
As mentioned earlier there is a near equivalence

between the flip distance problem on simple convex
polygons, and the rotation distance problem on two
ordered, rooted binary trees. The definition of the
rotation distance problem is rather technical so we
omit details. In any case, it is well-known that an
instance of rotation distance of size n (where the
size here denotes the number of non-leaf nodes in
one of the input trees) can be easily mapped to an
instance of flip distance of size n + 2, such that
the distance is preserved. The mapping goes both
ways [12]. Hence, the kernel obtained in Theorem 4
(and that of Theorem 3) also goes through for ro-
tation distance, up to additive terms.

Corollary 5. For each ϵ > 0 there is a kernel of
size (1 + ϵ)k for the rotation distance problem.

4. Experimental results

It is natural to ask how the kernels described in
Theorems 3 and 4 function in practice. In this sec-
tion we undertake a simple experiment to partially
answer this question.

4.1. Experimental setup

The dataset for our experiment consists of pairs
of random polygons of a certain size n and max-
imum distance D. The polygon pairs have been
obtained through the following procedure:

1. Generate a random polygon by selecting uni-
formly at random two non-consecutive vertices
to form a diagonal. Then split the polygon
through that diagonal and recursively apply
the same operation to both subpolygons until
no more diagonals can be added.

2. Starting from the previous polygon we perform
D random flips to it to obtain a second poly-
gon. By random flip we mean that the diagonal
we flip is selected uniformly at random.

This way we have an easy to compute lower
bound on the distance, which is the number of non-
common diagonals of the pair, and an upper bound
on the distance which is given by D.
For each n ∈ {10, 50, 100, 500, 1000}, maxi-

mum distance D ∈ {0.1, 0.5, 1, 1.5, 2}n and
ϵ ∈ {1, 1/3, 1/6, 1/9, 1/12, 1/15, 1/18, 1/21, 1/24,
1/27, 1/30} we have generated 100 random pairs of

polygons and executed a slightly modified version
of the (1 + ϵ)k kernel algorithm described in The-
orem 4. Note that ϵ = 1 actually corresponds to
the previous best kernel by Lucas, and ϵ = 1/3 to
the kernel from Theorem 3. Note also that we have
chosen to express the maximum distance D as a
fraction of the instance size n.

We modify the (1+ϵ)k kernel as follows. First, we
do not compute the flip distances of the small poly-
gons that are created by the decomposition pro-
cedure, i.e. those of size less than 1/ϵ + 3. We
simply remove them. Removing them is reasonable
because we are primarily interested in the reduction
achieved by the kernel, not its running time. To ob-
tain this information it is not necessary to solve the
small instances. In particular, as explained in The-
orem 4, the size of the kernel will be the result of
merging all the polygons that remain. Of course, in
a practical setting the running time of the kernel,
which increases for decreasing ϵ, would have to be
taken into account; we return to this point later.

Second, we will not use a parameter k, since
the parameter k is actually only used to determine
whether an early YES or NO conclusion can be
reached (see Step 3 of Theorem 3). By leaving k
out of the experiments we therefore potentially un-
derestimate the power of the kernel: we might allow
large NO instances to survive. However, this sim-
plification is safe in the sense that, if the simplified
kernel we have implemented performs well, a full-
blown implementation of the kernel (that does take
k into account) would perform at least as well.

For each of the mentioned combinations we mea-
sure the average, over the 100 pairs generated, of
the following statistics:

• Kernel size. The size of the single pair of poly-
gons after applying the kernel.

• Kernel size as a fraction of n. That is, kernel
size/n.

• Theoretical kernel size. Let NC be the num-
ber of non-common diagonals before applying
the kernel, then, the theoretical kernel size
is defined as (1 + ϵ)NC + 2. When apply-
ing the kernel for a certain k, we know that
the size is at most (1 + ϵ)k + 2. Since NC
is a lower bound for the distance, we have
(1+ϵ)k+2 ≥ (1+ϵ)NC+2, so that the theoret-
ical kernel size is lower than the upper bound
for the size for every k. We do this because
we do not know the true distance. Note that

5

comparing the kernel size obtained in practice,
to the theoretical kernel size, is safe in the fol-
lowing sense: if the obtained kernel is smaller
than the theoretical kernel size, then it will def-
initely be smaller than the true kernel bound
i.e. the bound that is a function of the actual
distance.

• Number of non-common diagonals before ap-
plying the kernel.

• Number of non-common diagonals after apply-
ing the kernel.

• Number of sub-instances removed. This is the
number of small, i.e. of size less than 1/ϵ+3, in-
stances removed by the kernelization algorithm
before the merging step.

Not all these values are elaborated as results, for
a detailed report on these values we refer to the
repository1 that contains all the code and data from
the experiments.

4.2. Results

4.2.1. Kernel size

In Figure 4 we show for n = 1000 and D = 1n =
1000 how the size of the kernel evolves as ϵ de-
creases. We only show this n and D combination
because, as can be observed in the full results in the
repository, a similar pattern is observed regardless
of D and n.

A number of observations can be made. First, the
kernel size (blue line) is significantly smaller than
the theoretical kernel size (orange line), meaning
that the gap between the achieved reduction and
the real upper bound will be even larger. Second,
the kernel size is also significantly smaller than the
natural lower bound of the number of non-common
diagonals NC (dashed green line). Third, the 4k/3
kernel (blue line at ϵ = 1/3) achieves more reduc-
tion than Lucas’ kernel (red dashed line), despite
requiring no additional computational time.

4.2.2. Computational effort required to solve small
instances

As mentioned earlier the running time of our ker-
nelization algorithm increases as ϵ decreases due to
the need to exactly solve small instances i.e. those

1See: https://github.com/mbosch95/tri_kernel_exp

of size less than 1/ϵ + 3 (see Theorem 4). In Ta-
ble 1 we can see the maximum size of small in-
stances that in theory would have to be computed
exactly by the kernel, compared to the largest such
instances we encountered during the experiment for
D = n = 1000.
We see that here the observed maximum size of

the small instances is somewhat smaller than the
theoretical maximum. This was not always the
case: for example, when D becomes very large rel-
ative to n the observed maximum often approaches
the theoretical maximum. In any case, the table
gives an idea of how future speed-ups of algorithms
for exactly solving (small) flip distance instances
can contribute to a pre-processing framework. Note
also that, as we can see in Figure 4, the size of the
kernel approaches zero for our smallest choices of ϵ,
meaning that we have effectively reduced the prob-
lem of solving an instance of size 1000 to that of
solving instances of size at most 32 (and often much
smaller).

5. Discussion

Our kernel makes use of the fact that two poly-
gons of size n with no common diagonals have n−3
non-common diagonals, which is a lower bound on
the flip distance. Hence, for such “fully reduced”
instances the ratio of the instance size to the flip
distance is at most n

n−3 which is 1 + o(1). In this
sense, our (1 + ϵ)k kernel feels like a natural result
for this problem. We would like to remark that, un-
like previous kernels, our approach manages to re-
duce the number of non-common diagonals in some
instances, when discarding small instances of size
larger than 3.

It would be interesting to explore alternative,
less inflated parameterizations of the problem. For
example, if we let d denote the number of non-
common diagonals in an instance, we could ask:
is the flip distance ≤ d + k? We also note that
there has been quite sophisticated parameterized
complexity work undertaken on the flip distance
problem in recent years, although most of it has
been done on more general versions of it: in tri-
angulations of point sets on the plane [5, 8]. We
wonder whether those results can be strengthened
in our more restricted setting i.e. the simple convex
polygon case.

We note in passing that our improved kernel
does not lead to an improvement of the polynomial-
time approximation algorithm by Cleary et al. [2].

6

Figure 4: Results for the experiment when n = 1000 and D = 1n = 1000. Each datapoint is the average of the 100 polygon
pairs generated for that specific combination of experimental parameters. The blue line shows the empirically observed kernel
size, while the orange line indicates the theoretical kernel size. The dashed red line shows the observed size of the previous best
kernel (by Lucas), and the dashed purple line shows its theoretical kernel size. Finally, the number of non-common diagonals
of the original pair (before kernelization) is shown by the dashed green line.

ϵ 1/3 9/30 8/30 7/30 6/30 5/30 4/30 3/30 2/30 1/30
observed max n 5.00 6.00 6.00 7.00 7.00 8.00 9.98 11.82 15.26 19.11
theoretical max n 5 6 6 7 7 8 10 12 17 32

Table 1: (Average of) the observed maximum size n of small instances that need to be solved exactly when n = D = 1000
for each ϵ, compared to the theoretical maximum size (largest integer strictly less than 1/ϵ+ 3) of small instances that we are
required to solve.

That article uses a similar technique to Lucas, but
the limiting factor there is the algorithmic upper
bound, which is an algorithm that takes in the
worse case two flips to fix each non-common diago-
nal.

Finally, we return to rotation distance. As stated
in Corollary 5, we obtain (up to an additive differ-
ence of 2) the same kernel result for rotation dis-
tance. For us, the additive term is insignificant, but
for Lucas [10] it can be of importance. Lucas uses
the correspondence with rotation distance to derive
the 2k kernel. The bound there is based on the ob-
servation that, after splitting at common diagonals
and deleting distance-0 subinstances, and letting
d be the total number of non-common diagonals,
there can be at most d subinstances of pairs of poly-
gons, each with a corresponding pair of trees, and
each such subinstance (i.e. pair of trees) has at least

one non-root interior node. The worst case is when
there are d subinstances, each with exactly one non-
root interior node. (In the rotation distance prob-
lem non-root interior nodes correspond to diagonals
in the flip distance problem.) In the rotation dis-
tance literature the size of an instance is usually
taken to be the number of interior nodes, including
the root ([4, 9, 11, 12] among others). This yields
a bound of 2d ≤ 2k. However, when translated to
flip distance, the worst case corresponds to d subin-
stances, each of which has exactly one non-common
diagonal (and no common diagonals). Such subin-
stances are squares, and in the vast majority of the
literature the size of the polygons is regarded as
the number of outer edges [5, 7, 8, 12]. Taking that
metric, Lucas’ kernel would yield 4d ≤ 4k for flip
distance, not 2k, so the kernel distorts when using
the usual sizes of the problems. In a nutshell: Lu-

7

cas left the kernel as a set of subinstances, but this
can cause small additive terms to accumulate when
switching between frameworks. Our kernel avoids
such problems by merging the subinstances into a
single instance at the end; this is the significance of
the merging step.

6. Acknowledgements

We thank Steve Chaplick for useful discussions.

References

[1] O. Aichholzer, W. Mulzer, and A. Pilz. Flip dis-
tance between triangulations of a simple polygon is NP-
Complete. Discrete Comput. Geom., 54:368–389, 09
2015.

[2] S. Cleary and K. John. A Linear-Time Approximation
Algorithm for Rotation Distance. J. Graph Algorithms
Appl., 14, 03 2009.

[3] S. Cleary and K. St. John. Rotation distance is fixed-
parameter tractable. Inf. Process. Lett., 109(16):918–
922, 07 2009.

[4] K. Culik and D. Wood. A note on some tree similarity
measures. Inf. Process. Lett., 15(1):39–42, 1982.

[5] Q. Feng, S. Li, X. Meng, and J. Wang. An improved
FPT algorithm for the flip distance problem. Inf. Com-
put., page 104708, 2021.

[6] F. Fomin, D. Lokshtanov, S. Saurabh, and M. Zehavi.
Kernelization: Theory of Parameterized Preprocessing.
Cambridge University Press, 2019.

[7] F. Hurtado and M. Noy. Graph of triangulations of
a convex polygon and tree of triangulations. Comput.
Geom., 13(3):179–188, 1999.

[8] I. Kanj, E. Sedgwick, and G. Xia. Computing the
flip distance between triangulations. Discrete Comput.
Geom., 58:313–344, 2017.

[9] J. M. Lucas. Untangling Binary Trees via Rotations.
Comput. J., 47(2):259–269, 01 2004.

[10] J. M. Lucas. An improved kernel size for rotation dis-
tance in binary trees. Inf. Process. Lett., 110(12):481–
484, 2010.

[11] J. Pallo. An efficient upper bound of the rotation dis-
tance of binary trees. Inf. Process. Lett., 73(3):87–92,
2000.

[12] D. Sleator, R. Tarjan, and W. Thurston. Rotation dis-
tance, triangulations, and hyperbolic geometry. J. Am.
Math. Soc., 1(3):647–681, July 1988.

8

