// LEV1ATHAN Version 1.0, 21 september 2009 // COMMENT: Pre-processing the input file to count the leaves // COMMENT: Pre-processing showed that there are 33 leaves in the input. // SUMMARY: Input had 33 leaves. // COMMENT: Triplet set is already dense. // SUMMARY: There are 5787 triplets in the input. // SUMMARY: Total weight of input triplets is 5787. // COMMENT: We achieved non-trivial local perfection. // COMMENT: We achieved non-trivial local perfection. // COMMENT: We achieved non-trivial local perfection. // SUMMARY: (Before post-processing) // SUMMARY: We got 5143 units of triplet weight, that's 88.87% of total weight. // SUMMARY: In total 644 units of triplet weight were -not- consistent with the ouput network. // SUMMARY: Output network contained 1544 triplets -not- in the original input. // SUMMARY: The symmetric difference is thus 644 + (1 * 1544) = 2188 // SUMMARY: (After post-processing) strict digraph G1 { edge [fontsize=8] labelbox [shape=box, width=0.4, label="File: example.trips\nNumber of triplets: 5787\nWeight of triplets: 5787\nOverall %: 88.87%"]; 1000 [shape=point]; 1001 [shape=point]; 1002 [shape=point]; 1003 [shape=point]; 2 [shape=box, width=0.3, label="15E2\n(85.24%)"]; 1005 [shape=point]; 13 [shape=box, width=0.3, label="19E2\n(86.42%)"]; 1007 [shape=point]; 17 [shape=box, width=0.3, label="23E2\n(86.51%)"]; 19 [shape=box, width=0.3, label="25E2\n(86.79%)"]; 3 [shape=box, width=0.3, label="15E\n(90.72%)"]; 1011 [shape=point]; 4 [shape=box, width=0.3, label="17E\n(92.13%)"]; 1013 [shape=point]; 6 [shape=box, width=0.3, label="21E\n(92.74%)"]; 7 [shape=box, width=0.3, label="23E\n(90.52%)"]; 1016 [shape=point]; 1017 [shape=point]; 1018 [shape=point]; 1019 [shape=point]; 1 [shape=box, width=0.3, label="15E1\n(93.14%)"]; 8 [shape=box, width=0.3, label="30E1\n(90.12%)"]; 31 [shape=box, width=0.3, label="17E1\n(89.91%)"]; 1023 [shape=point]; 1024 [shape=point]; 5 [shape=box, width=0.3, label="18E1\n(87.7%)"]; 32 [shape=box, width=0.3, label="20E1\n(90.72%)"]; 10 [shape=box, width=0.3, label="16E1\n(89.51%)"]; 1028 [shape=point]; 1029 [shape=point]; 11 [shape=box, width=0.3, label="16E2\n(87.47%)"]; 1031 [shape=point]; 14 [shape=box, width=0.3, label="22E2\n(88.01%)"]; 33 [shape=box, width=0.3, label="20E2\n(88.41%)"]; 1034 [shape=point]; 1035 [shape=point]; 1036 [shape=point]; 1037 [shape=point]; 1038 [shape=point]; 1039 [shape=point]; 9 [shape=box, width=0.3, label="30E4\n(90.89%)"]; 1041 [shape=point]; 1042 [shape=point]; 29 [shape=box, width=0.3, label="32E4\n(87.54%)"]; 27 [shape=box, width=0.3, label="31E4\n(88.58%)"]; 1045 [shape=point]; 20 [shape=box, width=0.3, label="25E4\n(87.93%)"]; 1047 [shape=point]; 23 [shape=box, width=0.3, label="30E2\n(91.38%)"]; 1049 [shape=point]; 16 [shape=box, width=0.3, label="22E4\n(90.13%)"]; 21 [shape=box, width=0.3, label="26E4\n(89.7%)"]; 1052 [shape=point]; 25 [shape=box, width=0.3, label="31E2\n(90.11%)"]; 1054 [shape=point]; 1055 [shape=point]; 12 [shape=box, width=0.3, label="18E3\n(86.47%)"]; 1057 [shape=point]; 15 [shape=box, width=0.3, label="22E3\n(86.52%)"]; 18 [shape=box, width=0.3, label="24E3\n(87.23%)"]; 1060 [shape=point]; 1061 [shape=point]; 1062 [shape=point]; 1063 [shape=point]; 28 [shape=box, width=0.3, label="32E3\n(89.05%)"]; 26 [shape=box, width=0.3, label="31E3\n(88.71%)"]; 1066 [shape=point]; 22 [shape=box, width=0.3, label="29E3\n(87.73%)"]; 24 [shape=box, width=0.3, label="30E3\n(88.52%)"]; 30 [shape=box, width=0.3, label="23E3\n(88.61%)"]; 1000 -> 1001 [label="1808"] 1000 -> 1016 [label="1808"] 1001 -> 1002 [label="216"] 1001 -> 3 [label="450"] 1001 -> 1011 [label="1279"] 1002 -> 1003 [label="1839"] 1003 -> 2 [label="497"] 1003 -> 1005 [label="1431"] 1005 -> 13 [label="503"] 1005 -> 1007 [label="983"] 1007 -> 17 [label="507"] 1007 -> 19 [label="506"] 1011 -> 4 [label="457"] 1011 -> 1013 [label="882"] 1013 -> 6 [label="460"] 1013 -> 7 [label="449"] 1016 -> 1017 [label="2267"] 1016 -> 1028 [label="3298"] 1017 -> 1018 [label="868"] 1017 -> 1023 [label="1247"] 1018 -> 1019 [label="7"] 1018 -> 8 [label="447"] 1018 -> 31 [label="446"] 1019 -> 1 [label="462"] 1023 -> 1019 [label="2"] 1023 -> 1024 [label="859"] 1023 -> 10 [label="444"] 1019 -> 1 [label="462"] 1024 -> 5 [label="435"] 1024 -> 32 [label="450"] 1028 -> 1029 [label="1458"] 1028 -> 1034 [label="3687"] 1029 -> 11 [label="510"] 1029 -> 1031 [label="1005"] 1031 -> 14 [label="514"] 1031 -> 33 [label="519"] 1034 -> 1002 [label="960"] 1034 -> 1035 [label="149"] 1034 -> 1052 [label="2877"] 1002 -> 1003 [label="1839"] 1003 -> 2 [label="497"] 1003 -> 1005 [label="1431"] 1005 -> 13 [label="503"] 1005 -> 1007 [label="983"] 1007 -> 17 [label="507"] 1007 -> 19 [label="506"] 1035 -> 1036 [label="2629"] 1036 -> 1037 [label="5"] 1036 -> 1047 [label="1283"] 1037 -> 1038 [label="1663"] 1038 -> 1039 [label="897"] 1038 -> 1045 [label="452"] 1039 -> 9 [label="469"] 1039 -> 1041 [label="459"] 1041 -> 1042 [label="2"] 1041 -> 27 [label="458"] 1042 -> 29 [label="450"] 1045 -> 20 [label="452"] 1045 -> 1042 [label="1"] 1042 -> 29 [label="450"] 1047 -> 23 [label="467"] 1047 -> 1049 [label="888"] 1049 -> 1037 [label="6"] 1049 -> 16 [label="466"] 1049 -> 21 [label="462"] 1037 -> 1038 [label="1663"] 1038 -> 1039 [label="897"] 1038 -> 1045 [label="452"] 1039 -> 9 [label="469"] 1039 -> 1041 [label="459"] 1041 -> 1042 [label="2"] 1041 -> 27 [label="458"] 1042 -> 29 [label="450"] 1045 -> 20 [label="452"] 1045 -> 1042 [label="1"] 1042 -> 29 [label="450"] 1052 -> 25 [label="465"] 1052 -> 1054 [label="2665"] 1054 -> 1055 [label="1223"] 1054 -> 1060 [label="1673"] 1054 -> 1063 [label="2"] 1055 -> 1035 [label="13"] 1055 -> 12 [label="454"] 1055 -> 1057 [label="886"] 1035 -> 1036 [label="2629"] 1036 -> 1037 [label="5"] 1036 -> 1047 [label="1283"] 1037 -> 1038 [label="1663"] 1038 -> 1039 [label="897"] 1038 -> 1045 [label="452"] 1039 -> 9 [label="469"] 1039 -> 1041 [label="459"] 1041 -> 1042 [label="2"] 1041 -> 27 [label="458"] 1042 -> 29 [label="450"] 1045 -> 20 [label="452"] 1045 -> 1042 [label="1"] 1042 -> 29 [label="450"] 1047 -> 23 [label="467"] 1047 -> 1049 [label="888"] 1049 -> 1037 [label="6"] 1049 -> 16 [label="466"] 1049 -> 21 [label="462"] 1037 -> 1038 [label="1663"] 1038 -> 1039 [label="897"] 1038 -> 1045 [label="452"] 1039 -> 9 [label="469"] 1039 -> 1041 [label="459"] 1041 -> 1042 [label="2"] 1041 -> 27 [label="458"] 1042 -> 29 [label="450"] 1045 -> 20 [label="452"] 1045 -> 1042 [label="1"] 1042 -> 29 [label="450"] 1057 -> 15 [label="456"] 1057 -> 18 [label="458"] 1060 -> 1061 [label="1296"] 1060 -> 30 [label="467"] 1061 -> 1062 [label="473"] 1061 -> 1066 [label="891"] 1062 -> 1063 [label="13"] 1062 -> 26 [label="464"] 1063 -> 28 [label="464"] 1066 -> 22 [label="458"] 1066 -> 24 [label="463"] 1063 -> 28 [label="464"] } // SUMMARY: eNewick output: ((((15E2,(19E2,(23E2,25E2))))#H1,15E,(17E,(21E,23E))),((((15E1)#H2,30E1,17E1),(#H2,(18E1,20E1),16E1)),((16E2,(22E2,20E2)),(#H1,(((((30E4,((32E4)#H3,31E4)),(25E4,#H3)))#H4,(30E2,(#H4,22E4,26E4))))#H5,(31E2,((#H5,18E3,(22E3,24E3)),((((32E3)#H6,31E3),(29E3,30E3)),23E3),#H6)))))); // SUMMARY: In total 644 units of triplet weight were -not- consistent with the ouput network. // SUMMARY: Output network contained 1544 triplets -not- in the original input. // SUMMARY: Weight of missing triplets before contraction minus weight of missing triplets afterwards: 0 // SUMMARY: Number of surplus triplets before contraction minus number of surplus triplets afterwards: 0 // CONCLUSION: After post-processing we got 5143 units of triplet weight, that's 88.87% of total weight (before post-processing this was 88.87%). // CONCLUSION: After post-processing the symmetric difference is thus 644 + (1 * 1544) = 2188 (before post-processing this was 2188) // STAT: PERCENTAGE = 88.87 // STAT: NETWORK-TRIPLET SD = 2188