From phylogenetic trees to
phylogenetic networks: possible
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The Extended Chomsky Hierarchy
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Figure from: http://www.cs.virginia.edu/~robins/cs3102/slides/Chomsky _large.gif
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Roadmap of talk

1. Biological motivation for phylogenetic networks

2. Models and algorithms — where are there
opportunities for generalization to non-biological

fields?

3. Looking forwards...




Roadmap of talk

1. Biological motivation for phylogenetic networks

2. Models and algorithms — where are there
opportunities for generalization to non-biological

fields?

3. Looking forwards...

Computational complexity
cannot be ignored!




Biological motivation for
phylogenetic networks




Gene trees, species trees

* The “classical” assumption:

Gene 1 Gene 2 Gene 3
E.coli Fish Dog E.coli Fish Dog E.coli Fish Dog
Cat Cat Cat
Gene Tree 1 Gene Tree 2 Gene Tree 3

Different genes, same tree




Gene trees, species trees

* The “classical” assumption:

Gene 1 Gene 2 Gene 3

Species tree (same as the gene trees)

E.coli Fish Dog
Cat




Gene trees, species trees

* But, as more data becomes available, we often see...

Gene 1 Gene 2 Gene 3

Plant 1 Plant 2 Plant 4 Fant™t Plant 4 FEM2 st Plant 4 Plant 2
Plant 3 Plant 3 Plant 3

Three distinct gene trees!
So what is the species tree? Can we even say there is a species “tree”?




One tree to rule them all...?

* There is nothing wrong with the idea of tree-like evolution.

* What is wrong with the classical view of evolution, is that
there is a single tree that can simultaneously explain
everything, in all cases.

* The reality is more complex. There are often multiple
conflicting (“incongruent”) tree signals involved.

* There are actually many different evolutionary phenomena
that can cause multiple conflicting tree signals to arise.




Table 2.1. Causes of reticulation i phylogenetic analyses

Estimation errors

(1) incorrect data
inadequate data-collection protocol
poor laboratory / museum / herbarium techmque
lack of quality control after data collection
misadventure

(11) inappropriate sampling
distant outgroup
rapid evolutionary rates
short internal branches

(111) model mis-specification
wrong assessment of primary homology
wrong substitution model
different optimality criteria

Biological conflict

(1v) analogy
parallelism
convergence
reversal

(v) homology
hybridization
1NIrogression
recombination
horizontal gene transfer
genome fusion
deep coalescence
duplicanon-loss

Introduction to

Phylogenetic Networks

David A. Morrison
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Biological conflict

(iv) analogy
parallehism
convergence
reversal

(v) homologv
hybridization
1ntrogression
recombination
horizontal gene transfer
genome fusion
deep coalescence
duplication—loss [RGR Prodictions |




(v) homology
hybridization
introgression
recombination
horizontal gene transfer
genome fusion
deep coalescence (Incomplete Lineage Sorting)
duplication—loss




(v) homology

[ hybridization

introgression

Horizontal / recombination

reticulate | horizontal gene transfer

| genome fusion

® deep Coalescence (Incomplete Lineage Sorting)
duplication—loss

vertical




Models and algorithms




Phylogenetic networks: 2 types

“Data display” / Evolutionary /

unrooted rooted / explicit
networks networks

No (explicit) model of evolution: tries to | Tries to model the events that caused the
graphically represent where the datais | data to be non-treelike.
non-treelike.

Does not generate a hypothesis of | Tries —in some limited way — to generate a
“what happened”. | hypothesis of “what happened”.




Phylogenetic networks: 2 types
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No (explicit) model of evolution: tries to | Tries to model the events that caused the
graphically represent where the datais | data to be non-treelike.
non-treelike.

Does not generate a hypothesis of | Tries —in some limited way — to generate a
“what happened”. | hypothesis of “what happened”.




Briefly: data-display networks

This example taken from Primer of Phylogenetic Networks by David Morrison,
http://acacia.atspace.eu/Tutorial/Tutorial.htm|

lentago

lantanoides
4,10,22,23,26,30,31,33

2,7,11,1213,14,15,16,19,25,28,34,36, 37,38 43

1,5,20,35,39

prunifolium

17,18,27,29
21,24 40

nudum
rufidulum

Figure 6. The Median Network for the Fiburnum sequence, showing the edges (or sets of parallel edges) associated
with each of the 43 characters.




Briefly: data-display networks

Character= L1 1213 |4 |5]6| 7|8 |9 l10]11]1F13]14]15|16]17]18]|19{20|21|22|23|24]|25|26|27|28|29|30|31|32{33|34|35|36|37|38|39]40]4 1]
Yiburnum lantanoides G G G G G
Yiburnum nudum G G G G G G
Yiburnum rufidulum G G G G G G G G G
Yiburnum prunifolium | G G G G G G G G G
Yiburnum lentago G G G G G G G G G

In each of the 43 DNA sites, at most two different DNA characters are observed.
So each site induces a bipartition. In this way, there are 9 different bipartitions
possible, shown below. (Note that the original numbering of the DNA sites is
lost in the figure below).

Viburnum lantanoides ‘ _ thin
Yiburnum nudum
Yiburnum rufidulum
Yiburnum prunifolium

Yiburnum lentago

Each parallel set of edges in the network, represents one of these 9 bipartitions.




Briefly: data-display networks

lentago

lantanoides
4.10,22,23,26,30,31,33

2,7,11,12,13,14,15,16,19,25 28,34 36,37,38,43

1,5,20,35,39

prunifolium

17,18,27,29

21,2440

nudum i
rufidulum

Figure 6. The Median Network for the Fiburnum sequence, showing the edges (or sets of parallel edges) associated
with each of the 43 characters.




Briefly: data-display networks

* In practice data-display phylogenetic networks are still used far
more than evolutionary phylogenetic networks.

* Why? Because they let the biologist explore the data, and to
draw his/her own conclusions. They do not impose a (probably
controversial...) model on the biologist.




Briefly: data-display networks

* In practice data-display phylogenetic networks are still used far
more than evolutionary phylogenetic networks.

* Why? Because they let the biologist explore the data, and to
draw his/her own conclusions. They do not impose a (probably
controversial...) model on the biologist.

* Note that nothing in this example is specific to biology! The
characters are binary and unordered. Such data display
networks are indeed already being used outside biology.
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The Phylogeny of Little Red Riding Hood, Jamshid J. Tehrani, PLOS One 2013
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Back to evolutionary networks

* Source of confusion: evolutionary phylogenetic networks
appear under various different names and guises in different
branches of (comparative) evolutionary biology.

Trees with edges added to denote horizontal gene transfer events

Deletion-Loss-Transfer species-gene tree reconciliation scenarios
Ancestral Recombination Graphs (ARGs)
Hybridization networks




“A rose by any other
name, would
smell as sweet...”




This construction - a

“reticulation event” - is the

topological heart of all

evolutionary C
phylogenetic network models,

even those that are not called

as such...




A

The (biological) meaning of such
an event depends on the
(biological) context!

C




Hybridization: Cis a hybrid
of Aand B




Horizontal Gene Transfer:
a transfer of one or more
genes from donor A into
recipient B (emphasizes
asymmetry)




Horizontal Gene Transfer:
is often drawn like this, to
emphasize the lateral
and asymmetrical
character of the transfer




A

Recombination (population

genetics): Cis a recombinant of

A and B. Linearly ordered

character data (e.g. SNPs) is often,
but not always, assumed.

C




011001 111011

Recombination (population

genetics): Cis a recombinant of

A and B. Linearly ordered

character data (e.g. SNPs) is often,
but not always, assumed.

011011




011001 111011

Recombination (population

genetics): Cis a recombinant of

A and B. Linearly ordered

character data (e.g. SNPs) is often,
but not always, assumed.

011011




Model assumptions

* Some evolutionary phylogenetic network models use
assumptions that might not hold in the linguistic context

* Linearly ordered genome
* Infinite sites model (each character mutates at most once)

* But many do not!

* Methods that work directly with sequence data (i.e.
multiple alighments) often do not use the linear ordering

* Many methods are (for computational complexity
reasons and due to modelling uncertainty) indirect,
based on puzzling together (fragments of) tree-like
signals that have already been obtained “elsewhere”...




Few parameters/unknowns; ¢‘
“model free” — no attempt
to distinguish the

different causes

of incongruence

)

Statistical

<&

Combinatorial

Many parameters/unknowns;
describing e.g. relative
frequency of different reticulate
& events




Few parameters/unknowns; ﬁ‘
“model free” — no attempt What are the

to distinguish the advantages and
different causes disadvantages of these
of incongruence methods?
<€ ->
Combinatorial Statistical

Many parameters/unknowns;
describing e.g. relative
frequency of different reticulate
‘L events




Few parameters/unknowns; ﬁ‘ o h
‘model free” — no attempt Broadly speaking: imagine

to distinguish the the usual parsimony vs.
different causes likelihood vs. Bayesian
of incongruence debates, against a backdrop

of more degrees of freedom
and more computational
intractability

)

Statistical

<&

Combinatorial

Many parameters/unknowns;
describing e.q. relative
frequency of different reticulate
& events




Few parameters/unknowns; ﬁ‘ Do these methods have 3
“model free” — no attempt

to distinguish the common core?
different causes
of incongruence
f incong Yes, arguably...
< >
Combinatorial Statistical

Many parameters/unknowns;
describing e.g. relative
frequency of different reticulate
‘L events




Sets of trees

* Arecurring theme - sometimes implicit - is the idea that
an evolutionary phylogenetic network has many different
trees (or more generally: tree-like signals) topologically
embedded within it.

* Thatis: it is the simultaneous representation of the
multiple distinct tree signals that can be presentin a
genome.
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Overall framework

Multiple conflicting tree
hypotheses/signals

+

Appropriate
choice of model
(main decision: how to
measure the goodness-
of-fit of the tree signals
to the network?)

+

Appropriate
choice of parameters

<

s

ets of (gene) trees

Species tree + sets of gene trees
Subtrees

Monophyletic clades

\Characters (e.g. DNA alignment)

Phylogenetic
network that
fits the input tree
signals “well”

Inference




Summary of methods...

Reticulation parsimony
Minimizing number of horizontal events

Reconciliation

Mapping gene tree(s) onto given species tree subject to
minimizing cost model (parsimony) or statistical model

Topological dissimilarity

E.g. SPR distance or incompatible quartet topologies as proxy for
presence and location of horizontal events

“Highways”

Only focus on horizontal events which many gene trees seem to
want to use

Character-based (e.g. on alighnments or SNP data)
Parsimony, Likelihood, Bayesian




Few parameters ﬁ‘

‘ “model free”

Reticulation
parsimony

Dissimilarity

measures
Parsimony (on
Sequences)
<€ ->
Combinatorial Statistical

-
<

Species-Gene Tree
Reconciliation

Many parameters &

»
»

Species-Gene Tree
Reconciliation

®
Likelihood

o
Bayesian
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Maximum likelihood inference of reticulate

evolutionary histories

Yun Yu®', Jianrong Dong?, Kevin J. Liu*®, and Luay Nakhleh®®"-'

Departments of *Computer Science and ®Ecology and Evolutionary Biology, Rice University, Houston, TX 77005

Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 7, 2014 (received for review April 30, 2014)

Hybridization plays an important role in the evolution of certain
groups of organisms, adaptation to their environments, and
diversification of their genomes. The evolutionary histories of

such groups are reticulate, and methods for reconstructing them
are still in their infancy and have limited applicability. We present
a maximum likelihood method for inferring reticulate evolutionary
histories while accounting simultaneously for incomplete lineage
sorting. Additionally, we propose methods for assessing confi-
dence in the amount of reticulation and the topology of the
inferred evolutionary history. Our method obtains accurate esti-

mates of reticulate evolutionary histories on simulated datasets.
Furthermore, our method provides support for a hypothesis of
a reticulate evolutionary history inferred from a set of house
mouse (Mus musculus) genomes. As evidence of hybridization in
eukaryotic groups accumulates, it is essential to have methods
that infer reticulate evolutionary histories. The work we present
here allows for such inference and provides a significant step to-
ward putting phylogenetic networks on par with phylogenetic
trees as a model of capturing evolutionary relationships.

reticulate evolution | incomplete lineage sorting | phylogenetic networks |

To the best of our knowledge, the first method to conduct
a search of the phylogenetic network space in search of opti-
mal phylogenies is described in a study by our group (18).
However, this method is based on the maximum parsimony
criterion: It seeks a phylogenetic network that minimizes the
number of “extra lineages” resulting from embedding the set
of gene tree topologies within its branches.

Progress with phylogenetic network inference notwithstanding,
methods of inferring reticulate evolutionary histories while ac-
counting for ILS are still considered to be in their infancy and
inapplicable broadly (9). This inapplicability stems mainly from
two major issues: the lack of a phylogenetic network inference
method and the lack of a method to assess the confidence in the
inference. Here, we develop methods that resolve both issues and
carry phylogenetic networks into the realm of practical phyloge-
nomic applications. For the inference, we propose operations for
traversing the phylogenetic network space, as well as methods for
assessing the complexity of a network. For measuring branch
support of inferred networks, we use the bootstrap method.
Furthermore, we derive, for the first time to our knowledge, the

Aactmbastiae {danaibd L nf ssme  broos aacth bennob lanathe Leteee




Likelihood function...

L(¥,T|%)= / (S:12)p (g%, T)dg,
=1

* Likelihood of a parameterized network topology (i.e. a
network topology augmented with a certain set of branch
lengths and inheritance probabilities at the horizontal events)
given a set of alighments (one per locus/gene) is equal to....

* The product (ranging over each input alignment S,) of,
* The integral ranging over all possible gene trees g, of

* The probability of observing S, given g, multiplied by
the probability of observing g within the network




Likelihood function...

Aaaaaaaaaaaaaaaaaaaaargh ......

L(¥,T|%)= / (S18)p(g¥. ).
=1

* Likelihood of a parameterized network topology (i.e. a
network topology augmented with a certain set of branch
lengths and inheritance probabilities at the horizontal events)
given a set of alighments (one per locus/gene) is equal to....

* The product (ranging over each input alignment S,) of,
* The integral ranging over all possible gene trees g, of

* The probability of observing S, given g, multiplied by
the probability of observing g within the network




Likelihood function...second try!

m
i=1
* Likelihood of a parameterized network topology (i.e. a
network topology augmented with a certain set of branch

lengths and inheritance probabilities at the horizontal events)
given a set of previously inferred gene trees, is...

* The product (ranging over each gene tree G)) of,
* The probability of observing G, given the network

* Topological computational “short-cut”




0.063 ~ 0.068

Fig. 3. Optimal phylogenetic network inferred on the house mouse
(M. musculus) dataset. A single individual was sampled from each of five
populations: M. m. domesticus from France (DF), M. m. domesticus from
Germany (DG), M. m. musculus from the Czech Republic (MZ), M. m. mus-
culus from Kazakhstan (MK), and M. m. musculus from China (MC). The
analysis found multiple, almost equally optimal, phylogenetic networks with
two reticulation events. These multiple networks all agreed on the recipient
populations but disagreed on the donor populations. One hybridization (the
top dashed horizontal arrow) involves the MRCA of DF and DG as a recipient
population, yet seems to have involved MK, MC, or their MRCA as the donor
population. The second hybridization (the bottom dashed horizontal arrow)
involves MZ as a recipient population, yet seems to have involved DF, DG, or
their MRCA as the donor population. Branch lengths in coalescent units (on
the tree branches) and inheritance probabilities (on the horizontal edges)
are shown (full details of the data and results are provided in 5/ Appendix).




Trends in phylogenetic networks

* Pragmatic combinations of parsimony-based and statistical methods:
comparative speed + resolution

* Constructive statistical methods (e.g. A Bayesian Method for Analyzing
Lateral Gene Transfer, Sjostrand et al, Systematic Biology 2014)

* Multi-event models (D-T-L-H-ILS....)
* Robustness/stability analysis (noise, uncertainty, multiple optima)
* Getting the huge size of the network search space under control {(...)

III

* Solving “small” problems (small parsimony, small likelihood) more
efficiently (unlike on trees these problems are NP-hard)

* ldentifiability / Reconstructability issues




Looking forwards...




Use outside biology?

Computational intractability has forced us to use all kinds of
(topological) short-cuts...e.g. working with previously inferred tree
topologies (or fragments of trees) instead of directly on sequence
data. Can non-biological fields exploit this abstraction layer?

Don’t worry if your “gene trees” are bad or incomplete or noisy, they
are in biology too! Many techniques aim at trying to compensate
for this (i.e. focussing only on the strongest signal)

Automatic network methods are in their infancy in biology too,
there is no silver bullet. Methods will remain semi-automated /
part of an ad-hoc experimental pipeline for the foreseeable future.
Make sure you understand exactly what software does...

Don’t bother trying to infer network topologies with lots of
horizontal events (either in biology or linguistics) — keep it simple,
i.e. at most “a few” horizontal events (cf. mouse, wheat) =




WY SJANEYRY NI SLICING THE WHEAT GENOME

Fig. 3. Model of the phylogenetic history
of bread wheat (Triticum aestivum,
AABBDD). Approximate dates for
divergence and the three hybridization
events are given in white circles in units of
million years ago. Differentiation of the wheat
lineage (Triticum and Aegilops) from a
common ancestor into the A and B
genome lineages began ~6.5 Ma. The first
hybridization occurred ~5.5 Ma between
the A and E genome lineages and led to

the origin of the D genome lineage by
homoploid hybrid speciation. The second
hybridization, between a close relative (BB)
of Ae. speltoides and T. urartu (AA), gave
rise to the allotetraploid emmer wheat

(T. turgidum; AABB) by polyploidization.
Bread wheat originated by allopolyploidization
from a third hybridization, between emmer
wheat and Ae. tauschii (DD). The three
diploid lineages are indicated with color and
labels. Inflorescences (spikes) illustrate
extant species closely related to those
involved in the polyploidizations.

AABBDD

Ancient hybridizations among the ancestral genomes
of bread wheat, Marcuse et al, Science 2014
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Who is Who in Phylogenetic Networks

# Authors Community Keywords Publications Software Browse Basket Account Contribute! About Help & O

FIND EXPLORE DISCOVER FOLLOW
EXPERTS RESEARCH SOFTWARE COMMUNITY

http://phylnet.univ-mlv.fr/

The GENEALOGICAL
world of PHYLOGENETIC ﬁ—

NETWORKS

http://phylonetworks.blogspot.com

Some websites...




Who is Who in Phylogenetic Networks
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Thank you for listening ©







Park et al. BMC Evolutionary Biclogy 2010, 10:131
httpy/f'www.biomedcentral.com/1471-2148/10/131

BMC
Evolutionary Biology

METHODOLOGY ARTICLE Open Access

Bootstrap-based Support of HGT Inferred by
Maximum Parsimony

Hyun Jung Parkf, Guohua Jint and Luay Nakhleh*t

Abstract

Background: Maximum parsimaony is one of the most commonly used criteria for reconstructing phylogenetic trees.
Recently, Nakhleh and co-workers extended this criterion to enable reconstruction of phylogenetic networks, and
demonstrated its application to detecting reticulate evolutionary relationships. However, one of the major problems
with this extension has been that it favors more complex evolutionary relationships aver simpler ones, thus having the
potential for overestimating the amount of reticulation in the data. An ad hoc solution to this problem that has been
used entails inspecting the impravement in the parsimony length as more reticulation events are added to the model,
and stopping when the improvement is below a certain threshaold,

Results: In this paper, we address this problem in a more systernatic way, by proposing a nonparametric bootstrap-
based measure of support of inferred reticulation events, and using it to determine the number of those events, as well
as their placements. A number of samples is generated from the given sequence alignment, and reticulation events are
inferred based on each sample. Finally, the support of each reticulation event is quantified based on the inferences
made over all samples.

Conclusions: We have implemented our method in the NEPAL software tool (available publicly at hitp//
bicinfo.csrice edus), and studied its perfermance on both biological and simulated data sets. While our studies show
very promising results, they also highlight issues that are inherently challenging when applying the maximum
parsimony criterion to detect reticulate evolution.
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solving massive instances of hybridization
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Abstract

Background: Reticulate events play an important role in determining evolutionary relationships. The problem of
computing the minimum number of such events to explain discordance between two phylogenetic trees is a hard
computational problem. Even for binary trees, exact solvers struggle to solve instances with reticulation number larger
than 40-50.

Results: Here we present CYCLEKILLER and NOMBINARYCYCLEKILLER, the first methods to produce solutions verifiably
close to optimality for instances with hundreds or even thousands of reticulations.

Conclusions: Using simulations, we demonstrate that these algorithms run quickly for large and difficult instances,
producing solutions that are very close to optimality. As a spin-off from our simulations we also present TERMINUSEST,
which is the fastest exact method cumrently available that can handle nonbinary trees: this is used to measure the
accuracy of the NoneinARYCYCLEKILLER algorithm. All three methods are based on extensions of previous theoretical
work (SIDMA 26(4):1635-1656, TCEB 10(1):18-25, SIDMA 28(1):49-66) and are publicly available. We also apply our
methods to real data.

Keywords: Hybridization number, Phylogenetic networks, Approximation algorithms, Directed feedback vertex set
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Abstract

Motivation: Traditionally, gene phylogenles have been reconstrected solely on the basis of mo-
lecular sequences; this, however, often does not provide enough Information to distinguish be-
tween statistically equivalent relationships. To address this problemn, several recent methods have
incofporated Information on the specles phylogeny In gene tree reconstruction, leading to dramatic
improvements in accuracy. Although probabilistlc methods are able to estimate all model param-
aters but are computationally expensive, parsimony methods—generally compautationally maore ef-
ficlent—require & prlior estimate of parameters and of the statistical support.

Resuits: Here, we present the Tree Estimation using Reconclliation (TERA) slgorithm, & parsimaony
based, specles tree aware method for gene tree reconstruction based on a scoring schame combin-
ing duplication, transfer and loss costs with an estimate of the seguence likelihood. TERA explores
all reconeciled gene trees that can be amalgamated from a sample of gene trees. Using a large scale
simulated dataset, we demonstrate that TERA achieves the same accuracy as the corresponding
probabilistic method while being faster, and outperforms other parsimony-based methods in both
securacy and speed. Running TERA on a sat of 1089 homologous gene families from complete
cyanobacterial genomes, we fimd that incorporating knowledge of the species tree resulis in a two
thirds reduction in the number of apparent transfer events.

HArailability and implementation: The algorithm s implemented In our programe TERA, which is
freely available from hitpoifmbb.unb-montp2_frMEBidownload_sources16__TERA.

Contact: caline scornavacea@ unlv-montp2 fr, ssolod@angel alte hu

Supplementary information: Supplemeantary data are available at Biolnfoermatics online.
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Abstract —Phylogenetic networks are a generalization of evolutionary trees and are an important tool for analyzing reticulate
evolutionary histories. Recently, there has been great interest in developing new methods to construct rooted phylogenetic
networks, that is, networks whose internal vertices correspond to hypothetical ancestors, whose leaves correspond to
sampled taxa, and in which vertices with more than one parent correspond to taxa formed by reticulate evolutionary
events such as recombination or hybridization. Several methods for constructing evolutionary trees use the strategy of
building up a tree from simpler building blocks (such as triplets or clusters), and so it is natural to look for ways to construct
networks from smaller networks. In this article, we shall demonstrate a fundamental issue with this approach. Namely, we
show that even if we are given all of the subnetworks induced on all proper subsets of the leaves of some rooted phylogenetic
network, we still do not have all of the information required to completely determine that network. This implies that even
if all of the building blocks for some reticulate evolutionary history were to be taken as the input for any given network
building method, the method might still output an incorrect history. We also discuss some potential consequences of this
result for constructing phylogenetic networks. [Evolutionary tree; network reconstruction; phylogenetic network; reticulate
evolution.]




Syst. Biol. 0(0):1~10, 2015
© The Author(s) 2015. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses /by /4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI:10.1093/sysbio /syv037

Which Phylogenetic Networks are Merely Trees with Additional Arcs?

ANDREW R. FRANCIS! AND MIKE STEEL2+*

1Centre for Research in Mathematics, School of Computing, Engineering and Mathematics, University of Western Sydney, Australia;
2Biomathematics Research Centre, University of Canterbury, New Zealand
*Correspondence to be sent to: Biomathematics Research Centre, University of Canterbury, Christchurch, 8041, Christchurch;
E-mail: mike.steel@canterbury.ac.nz

Received 13 April 2015; reviews returned 13 May 2015; accepted 20 May 2015
Associate Editor: Mark Holder

Abstract.—A binary phylogenetic network may or may not be obtainable from a tree by the addition of directed edges (arcs)
between tree arcs. Here, we establish a precise and easily tested criterion (based on “2-SAT”) that efficiently determines
whether or not any given network can be realized in this way. Moreover, the proof provides a polynomial-time algorithm for
finding one or more trees (when they exist) on which the network can be based. A number of interesting consequences are
presented as corollaries; these lead to some further relevant questions and observations, which we outline in the conclusion.
[Algorithm, Antichain, Phylogenetic network, phylogenetic tree, reticulate evolution, 2-SAT.]
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Abstract. —Lateral gene transfer (LGT)}—which transfers DNA between two non-vertically related individuals belonging
to the same or different species—is recognized as a major force in prokaryotic evolution, and evidence of its impact on
eukaryotic evolution is ever increasing. LGT has attracted much public attention for its potential to transfer pathogenic
elements and antibiotic resistance in bacteria, and to transfer pesticide resistance from genetically modified crops to other
plants. In a wider perspective, there is a growing body of studies highlighting the role of LGT in enabling organisms to
occupy new niches or adapt to environmental changes. The challenge LGT poses to the standard tree-based conception
of evolution is also being debated. Studies of LGT have, however, been severely limited by a lack of computational tools.
The best currently available LGT algorithms are parsimony-based phylogenetic methods, which require a precomputed
gene tree and cannot choose between sometimes wildly differing most parsimonious solutions. Moreover, in many studies,
simple heuristics are applied that can only handle putative orthologs and mmplet:ely disregard gene duplications (GDs).
Consequently, proposed LGT among specific gene families, and the rate of LGT in general, remain debated. We present a
Bayesian Markov-chain Monte Carlo-based method that integrates GD, gene loss, LGT, and sequence evolution, and apply
the method in a genome-wide analysis of two groups of bacteria: Mollicutes and Cyanobacteria. Our analyses show that
although the LGT rate between distant species is high, the net combined rate of duplication and close-species LGT is on
average higher. We also show that the common practice of disregarding reconcilability in gene tree inference overestimates
the number of LGT and duplication events. [Bayesian; gene duplication; gene loss; horizontal gene transfer; lateral gene
transfer; MCMC; phylogenetics.]




