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Introduction 
 

• There is no shortage of literature about the role of mathematics and 

computer science in computational biology. 

 

• The bottom line is well-known: computers, and the software and 

algorithms that run on them, have become a fundamental part of 

modern biology. 

 

• However, for people not working in mathematics or computer 

science, it remains rather “mystical” how software and algorithms 

are developed, and what they can - and cannot - do. 

 

 

 



Introduction 
 

• In this talk I want to try and de-mystify these issues a little, because 

I think this is important for the effective use of computers in biology. 

 

• I’ll do this by drawing on my own experiences in computational 

biology. 

 

• Particularly inspirational are those moments when you realise that, 

outside your own corner of expertise, very few concepts are 

“obvious” or “universal”… 

 



A disclaimer… 
 

• I’m a discrete mathematician, mainly interested in combinatorial 

optimization, so there will inevitably be a bias in that direction during 

this talk. 

 

• In particular, I feel a bit guilty that I have not said more about 

statistical methods.  These methods are extremely important in 

computational biology, and phylogenetics is no exception.  

 

• On the other hand, the principles of mathematical optimization often 

apply here too. For example, “How do I compute the maximum 

likelihood tree?” or`“How long should I run my Monte Carlo Markov 

Chain to guarantee that it is close to its uniform distribution?” 

 



Two motivating examples 



Sequence 1 T G C 

Sequence 2 T A C 

Sequence 3 A G G 

Sequence 4 A A G 

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html 

Maximum Parsimony (MP) 

Input 

 

Space of feasible solutions 

 



Sequence 1 T G C 

Sequence 2 T A C 

Sequence 3 A G G 

Sequence 4 A A G 

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html 

Maximum Parsimony (MP) 

Input 

 

Space of feasible solutions 

 

What is the “best” 

solution? 



Sequence 1 T G C 

Sequence 2 T A C 

Sequence 3 A G G 

Sequence 4 A A G 

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html 

Maximum Parsimony (MP) 

Input 

 

Space of feasible solutions 

 

Before we can determine 

the “best” tree, we need 

to formalize what “best” 

means… 



Sequence 1 T G C 

Sequence 2 T A C 

Sequence 3 A G G 

Sequence 4 A A G 

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html 

Maximum Parsimony (MP) 

Input 

 

Space of feasible solutions 

 
In MP, the “quality” of a 

tree is the number of 

mutations along its 

edges. 

 

The “best” tree is the one 

that minimizes this 

number.  



Sequence 1 T G C 

Sequence 2 T A C 

Sequence 3 A G G 

Sequence 4 A A G 

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html 

Maximum Parsimony (MP) 

Input 

 

4 

 

 

 

5 

 

 

 

6 



Sequence 1 T G C 

Sequence 2 T A C 

Sequence 3 A G G 

Sequence 4 A A G 

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html 

Maximum Parsimony (MP) 

Input 

 

4 

 

 

 

5 

 

 

 

6 

So the optimal tree is the 

first one (i.e. fewest 

mutations), with a 

parsimony score of 4. 

 

Here the word “optimal” 

says nothing about the 

biological relevance of 

the tree. It simply means: 

the  tree that minimizes 

the parsimony score. 



MP as an optimization problem 
 

• Input: a set of n sequences 

 

• Space of feasible solutions: all unrooted phylogenetic trees 
on n leaves, where the leaves are labelled by the input 
sequences 

 

• Objective function: the quality of a tree is defined to be its 
parsimony score i.e. the number of mutations along its edges 

 

• Goal: find a tree that minimizes the objective function. This is 
the optimal tree. 

 



MP as an optimization problem 
 

• Note that this does not say anything about how the optimal tree 

should be constructed, or even if it is computationally realistic. 

 

•  In an ideal world, there would be a perfect separation between the 

mathematical model (which is supposed to be an approximation of 

biological reality), and the question of how to efficiently find the 

optimal solution within the mathematical model. 

 

• In practice mathematical models are heavily influenced by the limits 

of computation (“tractability”). More about this later. 

 



Maximum Likelihood (ML) as an 

optimization problem 
 

• Input: a set of n sequences and a probability distribution on 

nucleotide mutations 

 

• Space of feasible solutions: all unrooted phylogenetic trees on n 

leaves, where the leaves are labelled by the input sequences 

 

• Objective function: the quality of a tree is defined to be the 

likelihood of observing that tree given the input probability 

distribution 

 

• Goal: find a tree that maximizes the objective function. This is the 

optimal tree. 

 



Abstraction 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

The objective function imposes 

a hierarchy (i.e. an ordering) on 

the space of feasible solutions 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

The objective function imposes 

a hierarchy (i.e. an ordering) on 

the space of feasible solutions. 

 

Here: darker = better 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

Solutions 

grouped 

according to 

increasing 

quality 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

It can be very 

dangerous to make 

biological inferences 

based on seeing only a 

single optimal solution! 

 

 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

It can be very 

dangerous to make 

biological inferences 

based on seeing only a 

single optimal solution! 

 

 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

It can be very 

dangerous to make 

biological inferences 

based on seeing only a 

single optimal solution! 

 

 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

Ideally we want software 

to accurately describe 

the common 

characteristics of all 

optimal solutions. 

 

 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

Unfortunately, in many 

cases finding even one 

optimal (or near-optimal) 

solution is already a 

major computational 

challenge.  

 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

Also, there is often also 

a vast number of 

optimal solutions, and 

summarizing them is 

also computationally 

problematic (due to 

symmetries). 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

There are two optimal 

solutions. So in this 

case there is no unique 

optimal solution. 

 

Also, there is often also 

a vast number of 

optimal solutions, and 

summarizing them is 

also computationally 

problematic (due to 

symmetries). 

 

 

 

Four optimal solutions that 

are mathematically distinct, 

but are in fact trivial 

symmetries of each other – 

can distort enumeration and 

sampling algorithms 



http://phylonetworks.blogspot.nl/2012_02_01_archive.html 



Some modelling issues 



Modelling issues (1) – every cloud has a 

silver lining 
 

• The exact form of the input, the objective function, and the space of 

feasible solutions is a modelling choice that should be made very 

carefully. 

 

• Due to computational limitations, mathematicians often encourage 

biologists to make the model as simple, and well-defined, as 

possible. 

 

• This attempt to limit model complexity is pragmatic, and restrictive. 

But it arguably has a positive side too.  

 

 



Modelling issues (1) – every cloud has a 

silver lining 
 

• It forces us to ask ourselves what “biologically plausible” really 

means (i.e. to identify implicit assumptions). 

 

• The modelling phase is also a good moment to clarify whether 

software is being used for hypothesis generation, or for hypothesis 

testing: a subtle but important distinction. 

 

 



Modelling issues (2) – if nothing else, 

lower bounds 
 

• Some mathematical optimization models (e.g. Maximum Likelihood) 

are considered to be quite accurate at reconstructing phylogenies. 

 

• This is based on many years of practice and validation. 

 

• Without that level of validation it is dangerous to use a mathematical 

optimization model to draw direct biological conclusions. 

 

• But even in the absence of validation, mathematical optimization 

models can give useful “lower bounds” on the complexity of the 

hypothesis required to explain the input data (i.e. the observed 

phenomena). MP is a classic example of this. 

 

 



Modelling issues (3) – Mixed-up 

messages 
 

• An (at the time, for me unexpected) danger of mathematical 

modelling is nicely illustrated by the following. 

 

• In the rooted phylogenetic networks community, there has been 

quite a bit of interest from mathematicians in “level-k” networks.  

 

• The level of a network is just a measurement of how locally 

reticulate it is. The higher the level, the more reticulate the network 

is.  It is just a measurement, not a value judgement on the 

plausibility of the network. 

 

 

 

 





Modelling issues (3) – Mixed-up 

messages 
 

• One of the reasons why mathematicians liked this way of ordering 

the space of phylogenetic networks, is that it is computationally 

easier to optimize over the space of lower-level networks, than 

higher-level networks. 

 

• This became “hip” and people started asking, but is it biologically 

plausible to assume that real phylogenetic networks are low level?  

 

• But this was never the point: level was intended as a “roadmap” to 

chart and understand the space of phylogenetic networks. Not as a 

hypothesis of biological relevance. But this is how it was interpreted! 

 

 



Attaining optimality 



“Tractability” 
 

• Suppose we have chosen a mathematical optimization model. 

 

• How do we find an optimal solution? Is it even possible to compute 

an optimal solution without using an impossible amount of time or 

computer memory? 

 

• That depends on many factors. In applied mathematics, an 

enormous amount of research time is spent trying to understand  

which mathematical optimization problems are “tractable”  and 

which are “intractable” . 

 

 

 

 



“Tractability” 
 

• The good news is that some mathematical optimization models are 

tractable. That is, you can construct optimal solutions quite quickly 

and without using a huge amount of computer memory. 

 

• There was big progress on this front in the 1950s-1980s. 

 

•  Arguably the biggest breakthrough was the realisation that any 

mathematical optimization model that could be expressed as a 

linear program, could in practice be solved efficiently. 

 

 

 

 

 



http://www.egwald.ca/operationsresearch/lpgraphical.php 



“Intractability”  
 

• The bottom line is that if a biological model can be squeezed into a 
tractable mathematical form that we understand well (e.g. linear 
programming), then this is great news. 

 

• Unfortunately, a great many mathematical models that arise in 
practice are – at least in theory – intractable. This means that  the 
amount of computational time required to construct optimal 
solutions, grows explosively as the size of the input data increases. 

 

• The most well-known way of showing that a problem is intractable, 
is to give a mathematical proof that it is “NP-hard”. 

 

• Models such as MP and ML actually belong to this group.  

 

 

 



http://maretbccalculus2007-2008.pbworks.com 

Size of input 

Running 

time 



http://maretbccalculus2007-2008.pbworks.com 

Size of input 

Running 

time 

Unfortunately most biologically 

expressive mathematical models 

behave like the green line  



“Intractability”   
 

• So what should we do if a mathematical optimization model is 
intractable? Is it the end of the road? 

 

• No. It’s actually only the beginning of the story. 

 

•  We are helped by the fact that intractability is a worst-case, 
“pessimistic” concept.  That is, in many cases it will still be 
possible to compute optimal solutions. 

 

• There is a huge amount of interest (both research and applied) in 
developing general software tools that, within limits, can compute 
optimal solutions to intractable problems. E.g. Integer Linear 
Programming (ILP). 

 

 

 







“Intractability”  - suboptimality 
 

• Even with the availability of very powerful general tools for tackling 
intractable problems (such as ILP), there is a limit to what can be 
done. 

 

• Sometimes you simply have to give up, and accept sub-optimal 
solutions. 

 

• The good news is that if we no longer insist on finding optimal 
solutions, it is always possible to find some solution. 

 

• The obvious question is then: is it a good solution? This is the 
fundamental difference between heuristics and approximation 
algorithms. 

 

 

 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

Solutions 

grouped 

according to 

increasing 

quality 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

A heuristic will give you a 

solution, but conveys no 

information about how far 

the solution is from 

optimality 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

A heuristic will give you a 

solution, but conveys no 

information about how far 

the solution is from 

optimality 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

A heuristic will give you a 

solution, but conveys no 

information about how far 

the solution is from 

optimality 

“I’ve found a solution. 

Parsimony score 200! 

Great!” 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

A heuristic will give you a 

solution, but conveys no 

information about how far 

the solution is from 

optimality 

“I’ve found a solution. 

Parsimony score 200! 

Great!” – indeed, not bad at all 

Best 

Score = 190 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

A heuristic will give you a 

solution, but conveys no 

information about how far 

the solution is from 

optimality 

“I’ve found a solution. 

Parsimony score 200! 

Great!” – no, really bad 

Best 

Score = 5 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

An approximation 

algorithm will give you a 

solution and some 

(pessimistic) measure of 

how far you are from 

optimality 



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

“I’ve found a solution. 

Parsimony score 200. 

Furthermore I can guarantee 

that it is within 20% of  

optimality.”  



Input (e.g.character data, 

distance data, 

trees, networks) 

Objective function (e.g. 

parsimony, likelihood, 

minimizing reticulation) 

Space of feasible solutions (e.g. 

space of trees, networks) 

“I’ve found a solution. 

Parsimony score 200. 

Furthermore I can guarantee 

that it is within 20% of  

optimality.”  

We obtain 

information 

about how 

large this 

gap can be 



“Intractability”  - suboptimality 
 

• The obvious question is then: is it a good solution? This is the 

fundamental difference between heuristics and approximation 

algorithms. 

 

• Certainly in my field, “heuristic” is a very dirty word, because they 

give us no reliable quality guarantees. So how do we know that the 

solution is “good”? 

 

• There is of course still a role for heuristics, but for them to have any 

meaning they have to be experimentally/empirically validated. 

When this happens, they can be (much) more useful in practice than 

approximation algorithms – which are anyway difficult to develop. 

 

 



Conclusions 



 

• Mathematical optimization models can be a useful tool whenever 
biological questions can be framed in terms of “optimality”. 

 

• The necessarily simplistic and restrictive character of such models is 
also a strength: it forces us to “codify” and “rank” implicit, qualitative 
and complex knowledge. 

 

• Be careful not to over-interpret the output of such models, especially 
when they have not been experimentally validated. 

 

• Arguably, the safest approach is to use mathematical optimization as 
an instrument in a more conventional biological analysis. 

 

• Computational intractability is a problem that threatens our ability to 
compute optimal solutions, and inevitably influences the modelling 
process. However, many techniques are available for dealing with 
“intractable” problems. 

 

• Be wary of any software package which cannot explain what exactly it 
is optimizing, or the proximity of its solutions to optimality! 

 

 



Thanks for listening 


