
Convex characters, algorithms and

matchings

Steven Kelk

Department of Advanced Computing Sciences (DACS)
Maastricht University, Netherlands

Based on joint work with Ruben Meuwese (DACS) and Stephan Wagner (Uppsala, Sweden)

https://arxiv.org/abs/2111.12632

DIAMANT autumn symposium 2022

2

• Phylogenetic trees summarise the evolution of a set of species X.

• The central goal of phylogenetics is to infer these trees from e.g. DNA

data.

• However, phylogenetics software often generates several topologically

distinct (“incongruent”) trees.

• Important to quantify incongruence i.e. in how far two (or more) trees

differ from each other topologically.

• Optimization problem: “maximum parsimony distance on 2 colours”

• Given two trees T, T’ on leaf labels X, this asks us – informally! - to find a

colouring of X with two colours {red, blue} such that in one of the trees the

colouring induces ‘many’ bichromatic edges, and in the other tree the

colouring induces ‘few’ bichromatic edges.

• The goal is to maximize the absolute difference in the number of induced

bichromatic edges.

• Quick example, then formal definitions follow.

Each tree then colours its internal nodes

to minimize the number of bichromatic edges

Each tree then colours its internal nodes

to minimize the number of bichromatic edges

5 bichromatic edges 2 bichromatic edges

5 bichromatic edges 2 bichromatic edges

5 bichromatic edges 2 bichromatic edges

Absolute difference is 3

5 bichromatic edges 2 bichromatic edges

Absolute difference is 3
No leaf colouring can create a bigger absolute difference, so the trees have distance 3

• A character f is simply a colouring of X.

• Can also be viewed simply as a partition of X, where colours = blocks.

• I will henceforth refer to characters as X-colourings.

• An extension of an X-colouring f to a tree T (on X), is an expansion of f to

also include the interior nodes of T.

• The parsimony score of a tree T (on X), with respect to f, is the minimum

number of bichromatic edges, ranging over all extensions of f to T. This is
denoted lf(T). An extension is optimal if it achieves this minimum.

• Given T and T’, both on X, we want to compute

dmp2(T,T’) = Maxf | lf(T)– lf(T’) |

….where here f ranges over all 2-colour X-colourings (i.e. bipartitions of X).

• NP-hard (and APX-hard) problem! Trivial O*(2n) algorithm.

• Today we show an improvement to O*(1.6181n), where here n=|X|.

• … and then to O*(1.5895n).

• These results are based on enumeration of so-called convex X-colourings

(“convex characters” in the phylogenetics literature).

• An X-colouring is convex on T, if the spanning trees induced by the colours

– one spanning tree per colour - are vertex disjoint in T.

Convex X-colouring { {1,8,4}, {3}, {9,2,7,5}, {0}, {6} } on T

- spanning trees are disjoint

T

Non-convex X-colouring { {1,8,4,0}, {3}, {9,2,7,5}, {6} } on T

- spanning trees are not disjoint

T

• Today we show an improvement to O*(1.6181n), where here n=|X|.

• … and then to O*(1.5895n).

• These results are based on enumeration of so-called convex X-colourings

(“convex characters” in the phylogenetics literature).

• An X-colouring is convex on T, if the spanning trees induced by the colours

– one spanning tree per colour - are vertex disjoint in T.

• Note that dmp2 seeks a 2-colour X-colouring that maximizes absolute

difference in the number of induced bichromatic edges. These 2-colourings

are not necessarily convex! We will enumerate convex X-colourings and then

carefully project them back onto 2-colour X-colourings.

• This also gives us an interesting corollary!

• Recall: in a graph, a matching is simply a subset of mutually disjoint edges.

• Arbitrary trees on n nodes can have O(1.6181n) matchings (consider:

paths), this is well known.

• Regular 3-trees have O(1.5538n) matchings, where the base of the

exponent is 1 + 2. This is also known.

• New corollary: trees with maximum degree 3, where there are no

adjacent degree-2 nodes, have at most O(1.5895n) matchings, and this

bound is sharp.

• But let’s first start at the beginning.

• Consider an optimal 2-colour X-colouring f2, i.e. one which maximizes the

absolute difference of parsimony scores between the input trees T and T’.

• Consider, now, an optimal extension of f2 to T (i.e. an extension with a

minimum number of bichromatic edges).

• Suppose there is an internal node u of T where two or three of its neighbours

have a different colour to u…

• Then we get a contradiction on the assumed optimality of the extension; if

you flip the colour of u, you get an extension with fewer bichromatic edges.

• As a result, we can assume the existence of an optimal 2-colour X-colouring,

and an optimal extension of that X-colouring, in which internal nodes of T

always lie on the interior of a red path or on the interior of a blue path.

uu

5 bichromatic edges 2 bichromatic edges

• Next: observe that deleting the bichromatic edges in an optimal extension,

on the tree with lower parsimony score, induces a new partition of X.

• Here, the induced partition is {{5,7,2,4,1}, {8}, {3,9,0,6}}.

• What if we flip the colour of 8, to red?

• Parsimony score drops by at least 1 in this tree,

but can decrease in the other tree by at most 1.

Recall: we assumed that this tree already had

the lower parsimony score.

So the absolute difference between the

trees does not decrease.

So we have a new optimal 2-colour X-colouring

(that induces fewer singleton components)!

1 bichromatic edge

• Next: observe that deleting the bichromatic edges in an optimal extension,

on the tree with lower parsimony score, induces a new partition of X.

• Here, the induced partition is {{5,7,2,4,1}, {8}, {3,9,0,6}}.

• What if we flip the colour of 8, to red?

• Parsimony score drops by at least 1 in this tree,

but can decrease in the other tree by at most 1.

Recall: we assumed that this tree already had

the lower parsimony score.

So the absolute difference between the

trees does not decrease.

So we have a new optimal 2-colour X-colouring

(that induces fewer singleton components)!

• By iterating this process, we eventually arrive at an optimal 2-colour X-

colouring, and an optimal extension of that X-colouring, where…

• Every internal node lies on the interior of a red path or a blue path;

•The new partition of X induced by deleting bichromatic edges of an

optimal extension of the X-colouring, is such that every block of the

partition contains at least 2 labels from X.

• We can relabel the blocks of the new partition of X induced by deleting

bichromatic edges, by unique colours. So if there were b bichromatic edges,

there are b+1 colours.

• Such an X-colouring is a convex X-colouring, in which every colour appears

on at least 2 labels of X, and such that the spanning trees for these colours

cover every internal node of T.

• (In fact, the spanning trees for these colours are provably the only optimal

extension for this convex X-colouring.)

• Note that, if you could find this specific convex X-colouring, you could easily

map it back without ambiguity to the optimal 2-colour X-colouring (this is

critical!)

• Note that, if you could find this specific convex X-colouring, you could easily

map it back without ambiguity to the optimal 2-colour X-colouring (this is

critical!)

• There are ϴ(1.6181n) convex X-colourings with at least two labels from X

per colour, and they can be listed efficiently [K. and Stamoulis, 2019]

• This gives us the simple, enumeration-based algorithm we need with

running time ϴ*(1.6181n).

1) ‘Guess’ the tree from {T,T’} with lower parsimony score at optimality;

2) Loop through all convex X-colourings (on that tree) with at least two labels

from X per colour:

• …In each case, map it to the corresponding, uniquely defined 2-colour

X-colouring, and note how good this 2-colour X-colouring is in terms of

the absolute difference in parsimony scores between the two trees.

3) Pick the best such 2-colour X-colouring that we find.

• Let’s do better!

• We will still enumerate convex X-colourings (with each colour appearing on

at least two labels of X), but we will discard some ‘useless’ part of this space.

• First: we can prove that if you take an optimal extension of an optimal

convex X-colouring (i.e. one that maps back to an optimal 2-colour X-

colouring), the bichromatic edges are a matching on T. Also, no matching

edge is incident to a leaf of T.

convex X-colouring {{a,b}, {c,d,e}, {f,g}}

bichromatic edges are shown in black,

forming a matching

T

• Let Tcore be the tree obtained by deleting the leaves of T.

• The convex X-colourings we are (potentially) interested in, are in bijection

with the space of matchings on Tcore.

• So upper bounds on the number of matchings in Tcore, can be translated into

bounds on the number of relevant convex X-colourings in T, and thus to new

bounds on the running time of the dmp2 algorithm.

T Tcore

• Problem: if Tcore is a path, then there can still be ϴ(1.6181n) matchings and

thus, also, an equal number of relevant convex X-colourings on T; does not

help to improve the bound 

• But! We can leverage some additional insights about the structure of

optimal solutions to the dmp2 problem.

Conclusion: it is not necessary to

consider any matchings in Tcore

that have this structure, so exclude

them!

• Problem: if Tcore is a path, then there can still be ϴ(1.6181n) matchings and

thus, also, an equal number of relevant convex X-colourings on T; does not

help to improve the bound 

• But! We can leverage some additional insights about the structure of

optimal solutions to the dmp2 problem.

• Let us call matchings that do not have this ‘island’ sub-structure, legal

matchings.

• How many legal matchings can there be in a tree with n nodes?

• We can establish a recurrence for this, and subsequently bound the rate of

growth of the recurrence using techniques from these SODA articles:

root

root child

root grandchild

b0 - root has one child, and one

grandchild; edge between child and

grandchild is a matching edge

b1 - root has one child, and the

root-child edge is a matching edge

a0 - legal matchings (excluding b0)

where there is no matching edge

incident to the root

a1 - legal matchings (excluding b1)

where there is a matching edge

incident to the root

(Note: e(T) is 1 if T is the empty tree, and 0 otherwise.)

T

Tl
Tr

(Note: e(T) is 1 if T is the empty tree, and 0 otherwise.)

The proof subsequently

leverages these two

properties (1) and (2) to

prove by induction that

α-n-1v(T) lies in conv≤(S)

• Sketch of inductive proof that α-n-1v(T) is in conv≤(S)

• Assume that the left child v1 has k nodes and the right child v2 has n-k-1

nodes.

• α-n-1v(T) = α-n-1 B(v1, v2) = B(α-k-1 v1, α
-n+k v2)

• By induction α-k-1 v1 and α-n+k v2 both lie in conv≤(S).

• So α-k-1 v1 and α-n+k v2 are both coordinate-dominated by convex sums of

the vectors S ={s1, s2… }

• Due to bilinearity of B (and non-negativity) we have that B(α-k-1 v1, α
-n+k v2)

is coordinate-dominated by the application of B to these two convex sums.

• Also due to bilinearity, the application of B to these two convex sums can

then be re-written as a convex sum over B(si, sj) vectors.

• Each B(si, sj) vector is (by definition) in conv≤(S), and conv≤(S) is convex,

so α-n-1v(T) is in conv≤(S) □

The proof subsequently

leverages these two

properties (1) and (2) to

prove by induction that

α-n-1v(T) lies in conv≤(S)

So [a0α
-n-1, a1α

-n-1, b0α
-n-1, b1α

-n-1,eα-n-1] is bounded…

…so a0, a1, b0, b1 are O(αn)…

… so a0 + a1 + b0 + b1 = number of legal matchings is O(αn)!

• The recurrence can easily be leveraged to efficiently list these legal

matchings, and thus to list relevant convex X-colourings; this yields an

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the

best we can do with this particular approach:

22 nodes

• The recurrence can easily be leveraged to efficiently list these legal

matchings, and thus to list relevant convex X-colourings; this yields an

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the

best we can do with this particular approach:
10144 matchings

cover this edge;

19888 matchings do

not cover this edge

22 nodes

• The recurrence can easily be leveraged to efficiently list these legal

matchings, and thus to list relevant convex X-colourings; this yields an

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the

best we can do with this particular approach:
10144 matchings

cover this edge;

19888 matchings do

not cover this edge

22 nodes

• The recurrence can easily be leveraged to efficiently list these legal

matchings, and thus to list relevant convex X-colourings; this yields an

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the

best we can do with this particular approach:
10144 matchings

cover this edge;

19888 matchings do

not cover this edge

22 nodes

• The recurrence can easily be leveraged to efficiently list these legal

matchings, and thus to list relevant convex X-colourings; this yields an

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the

best we can do with this particular approach:

22 nodes

• The recurrence can easily be leveraged to efficiently list these legal

matchings, and thus to list relevant convex X-colourings; this yields an

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the

best we can do with this particular approach:

22 nodes

Larger eigenvalue ≈ 1.589522

Legal matchings ≈ 1.589522k

k ≈ n/22

• Note that in a tree with no adjacent degree-2 nodes, every matching is

legal, and every legal matching is (vacuously) a matching.

• Corollary: So trees with maximum degree 3 and without adjacent degree-2

nodes, have at most O(1.5895n) matchings – note here we are talking about

normal matchings, not legal matchings.

• This bound is sharp, because the lower bound construction on the previous

slide is such a degree-constrained tree (so legal matchings  matchings).

• This lies between the O(1.6181n) bound on matchings for general trees,

and the O(1.5538n) bound for trees where all internal nodes have degree 3;

new result!

• Going further…

• How about eliminating ever larger ‘islands of illegality’? That is, excluding

ever-larger families of convex X-colourings, that do not help when searching

for optimal solutions to dmp2?

• By eliminating slightly larger ‘islands of illegality’ we get a set of vectors in

ℝ13 (rather than ℝ5) and with the help of Mathematica and linear

programming, things can also be shown to work out.

• This improves the bound to O(1.5833n) but everything starts to get rather

messy and unwieldy…

• Better than O(1.5603n) is, in any case, provably not possible, even if all

forms of illegality are excluded (construction not shown today).

• Conclusions and future work

• We obtained a O*(1.6181n) and then O*(1.5895n) algorithm for computing

dmp2 on binary phylogenetic trees, using enumeration. Corollary: a new

upper bound on the number of matchings in degree-restricted binary trees.

• A 2-colour X-colouring might have multiple optimal extensions, and hence

the mapping from 2-colour X-colourings to convex X-colourings is one-to-

many. Currently we rediscover such 2-colour X-colourings many times, which

is pointless. Can we eliminate this waste?

• Is there an elegant way to generate and analyse the recursions as we

eliminate ever larger ‘islands of illegality’?

• This is a lot of heavy enumerative combinatorics to obtain a O*(1.5895n)

algorithm for dmp2! Probably better algorithms can be obtained by designing

an algorithm that is not simply based on enumeration.

• See also: recent kernelization (FPT) results by Deen et al.

Thank you for listening!

Illegal matching

Illegal matching

Legal matchings:

