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* Phylogenetic trees summarise the evolution of a set of species X.



» The central goal of phylogenetics is to infer these trees from e.g. DNA
data.

» However, phylogenetics software often generates several topologically
distinct (“incongruent”) trees.

 Important to quantify incongruence i.e. in how far two (or more) trees
differ from each other topologically.






* Optimization problem: “maximum parsimony distance on 2 colours”

» Given two trees T, T’ on leaf labels X, this asks us — informally! - to find a
colouring of X with two colours {red, blue} such that in one of the trees the
colouring induces ‘many’ bichromatic edges, and in the other tree the
colouring induces ‘few’ bichromatic edges.

» The goal is to maximize the absolute difference in the number of induced
bichromatic edges.

* Quick example, then formal definitions follow.
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Each tree then colours its internal nodes
to minimize the number of bichromatic edges



Each tree then colours its internal nodes
to minimize the number of bichromatic edges



5 bichromatic edges 2 bichromatic edges
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5 bichromatic edges 2 bichromatic edges

Absolute difference is 3



5 bichromatic edges 2 bichromatic edges

Absolute difference is 3
No leaf colouring can create a bigger absolute difference, so the trees have distance 3



A character f is simply a colouring of X.
« Can also be viewed simply as a partition of X, where colours = blocks.
« | will henceforth refer to characters as X-colourings.

« An extension of an X-colouring fto a tree T (on X), is an expansion of f to
also include the interior nodes of T.

» The parsimony score of a tree T (on X), with respect to f, is the minimum

number of bichromatic edges, ranging over all extensions of fto T. This is
denoted 4(T). An extension is optimal if it achieves this minimum.

« Given T and T, both on X, we want to compute
dmp2(T, T) = Max; | 4(T)— 4(T) |
....where here f ranges over all 2-colour X-colourings (i.e. bipartitions of X).

* NP-hard (and APX-hard) problem! Trivial O*(2") algorithm.



« Today we show an improvement to O*(1.6181"), where here n=|X]|.
e ... and then to O*(1.5895").

* These results are based on enumeration of so-called convex X-colourings
(“convex characters” in the phylogenetics literature).

* An X-colouring is convex on T, if the spanning trees induced by the colours
— one spanning tree per colour - are vertex disjoint in T.



Convex X-colouring {{1,8,4}, {3}, {9,2,7,5}, {0}, tonT
- spanning trees are disjoint



Non-convex X-colouring { {1,8,4,0}, {3}, {9,2,7,5}, tonT
- spanning trees are not disjoint



* Note that dmp2 seeks a 2-colour X-colouring that maximizes absolute
difference in the number of induced bichromatic edges. These 2-colourings
are not necessarily convex! We will enumerate convex X-colourings and then

carefully project them back onto 2-colour X-colourings.

* This also gives us an interesting corollary!



* Recall: in a graph, a matching is simply a subset of mutually disjoint edges.

* Arbitrary trees on n nodes can have O(1.6181") matchings (consider:
paths), this is well known.

* Reqgular 3-trees have O(1.5538") matchings, where the base of the
exponent is 1 + 2. This is also known.

* New corollary: trees with maximum degree 3, where there are no
adjacent degree-2 nodes, have at most O(1.5895") matchings, and this
bound is sharp.

* But let’s first start at the beginning.



 Consider an optimal 2-colour X-colouring f,, i.e. one which maximizes the
absolute difference of parsimony scores between the input trees T and T’

 Consider, now, an optimal extension of f, to T (i.e. an extension with a
minimum number of bichromatic edges).

« Suppose there is an internal node u of T where two or three of its neighbours
have a different colour to u...
(
N/
u
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» Then we get a contradiction on the assumed optimality of the extension; if

you flip the colour of u, you get an extension with fewer bichromatic edges.

 As a result, we can assume the existence of an optimal 2-colour X-colouring,
and an optimal extension of that X-colouring, in which internal nodes of T
always lie on the interior of a red path or on the interior of a blue path.



* Next: observe that deleting the bichromatic edges in an optimal extension,
on the tree with lower parsimony score, induces a new partition of X.

» Here, the induced partition is {{5,7,2,4,1}, {8}, {3,9,0,6}}.

« What if we flip the colour of 8, to red?

« Parsimony score drops by at least 1 in this tree,
but can decrease in the other tree by at most 1.

Recall: we assumed that this tree already had
the lower parsimony score.

So the absolute difference between the
trees does not decrease.

So we have a new optimal 2-colour X-colouring
(that induces fewer singleton components)!

2 bichromatic edges



* Next: observe that deleting the bichromatic edges in an optimal extension,
on the tree with lower parsimony score, induces a new partition of X.

» Here, the induced partition is {{5,7,2,4,1}, {8}, {3,9,0,6}}.

« What if we flip the colour of 8, to red?

« Parsimony score drops by at least 1 in this tree,
but can decrease in the other tree by at most 1.

Recall: we assumed that this tree already had
the lower parsimony score.

So the absolute difference between the
trees does not decrease.

So we have a new optimal 2-colour X-colouring
(that induces fewer singleton components)!

1 bichromatic edge



* By iterating this process, we eventually arrive at an optimal 2-colour X-
colouring, and an optimal extension of that X-colouring, where...

 Every internal node lies on the interior of a red path or a blue path;
*The new partition of X induced by deleting bichromatic edges of an

optimal extension of the X-colouring, is such that every block of the
partition contains at least 2 labels from X.

RWE o




» We can relabel the blocks of the new partition of X induced by deleting
bichromatic edges, by unique colours. So if there were b bichromatic edges,
there are b+1 colours.

« Such an X-colouring is a convex X-colouring, in which every colour appears
on at least 2 labels of X, and such that the spanning trees for these colours
cover every internal node of T.

* (In fact, the spanning trees for these colours are provably the only optimal
extension for this convex X-colouring.)




 Note that, if you could find this specific convex X-colouring, you could easily
map it back without ambiguity to the optimal 2-colour X-colouring (this is
critical!)




 Note that, if you could find this specific convex X-colouring, you could easily
map it back without ambiguity to the optimal 2-colour X-colouring (this is
critical!)




* There are ©(1.6181") convex X-colourings with at least two labels from X
per colour, and they can be listed efficiently [K. and Stamoulis, 2019]

 This gives us the simple, enumeration-based algorithm we need with
running time ©*(1.6181").

1) ‘Guess’the tree from {1, T’} with lower parsimony score at optimality;

2) Loop through all convex X-colourings (on that tree) with at least two labels
from X per colour:
» ...In each case, map it to the corresponding, uniquely defined 2-colour
X-colouring, and note how good this 2-colour X-colouring is in terms of
the absolute difference in parsimony scores between the two trees.

3) Pick the best such 2-colour X-colouring that we find.




* Let’s do better!

« We will still enumerate convex X-colourings (with each colour appearing on
at least two labels of X), but we will discard some ‘useless’ part of this space.

* First: we can prove that if you take an optimal extension of an optimal
convex X-colouring (i.e. one that maps back to an optimal 2-colour X-
colouring), the bichromatic edges are a matching on T. Also, no matching
edge is incident to a leaf of T.

T a b
convex X-colouring {{a,b}, {c,d,e}, {f,g}}

\ ¢ bichromatic edges are shown in black,
forming a matching



* Let T, be the tree obtained by deleting the leaves of T.

» The convex X-colourings we are (potentially) interested in, are in bijection
with the space of matchings on T_,..
* So upper bounds on the number of matchings in T, can be translated into
bounds on the number of relevant convex X-colourings in T, and thus to new
bounds on the running time of the dmp2 algorithm.

T a b T

core



* Problem: if T, Is a path, then there can still be ©(1.6181") matchings and
thus, also, an equal number of relevant convex X-colourings on T; does not
help to improve the bound ®

« But! We can leverage some additional insights about the structure of
optimal solutions to the dmp2 problem.
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* Problem: if T, Is a path, then there can still be ©(1.6181") matchings and
thus, also, an equal number of relevant convex X-colourings on T; does not
help to improve the bound ®

« But! We can leverage some additional insights about the structure of
optimal solutions to the dmp2 problem.
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that have this structure, so exclude
them!



* Let us call matchings that do not have this ‘island’ sub-structure, legal
matchings.

« How many legal matchings can there be in a tree with n nodes?

» We can establish a recurrence for this, and subsequently bound the rate of
growth of the recurrence using techniques from these SODA articles:

20] M. Rosenfeld. “The growth rate over trees of any family of sets defined by a monadic second order formula is
semi-computable”. In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021. Ed. by Daniel Marx. STAM, 2021, pp. 776-795. por1: 10.1137/1.
9781611976465.49.

21]  G. Rote. “The maximum number of minimal dominating sets in a tree”. In: Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019.
Ed. by Timothy M. Chan. STAM, 2019, pp. 1201-1214. po1: 10.1137/1.9781611975482.73.



root

b, - root has one child, and one
grandchild; edge between child and
grandchild is a matching edge

root child

root grandchild

Figure 5: Legal matchings stored in by. A red edge represents an edge in the matching. As in the other figures in this
section the edge entering from above represents the edge that enters the subtree in the original tree.

b, - root has one child, and the
root-child edge is a matching edge

Figure 6: Legal matchings stored in b;. A red edge represents an edge in the matching.

u u a, - legal matchings (excluding by)
: . : where there is no matching edge
incident to the root

Figure 7: Legal matchings stored in ag.

u u a, - legal matchings (excluding b,)
E . I . where there is a matching edge
incident to the root

Figure 8: Legal matchings stored in a;. A red edge represents an edge in the matching.




ao(T) = (ao(Ty) + a1 (T1) + bo(T7) + b1(Ty) + e(Ty)) (ao(Ty) + a1 (T;) + bo (L) + b1 (L) + e(T7))
— bi(Th)e(T) — e(T1)b1(T}),

a1 (T) = ao(T1) (ao(Tr) + a1 (Ty) + bo(Ty) + bi(Tr)) + (ao(T7) + a1(T1) + bo(T1) + b1 (T7))ao(Ty),
bO(T) - bl(ﬂ)e(Tr) + e(Tl)bl (Tr)a
b1(T) = ao(Tq)e(T),) + e(T1)ap(T}). (Note: e(T) is 1 if T is the empty tree, and O otherwise.)




ao(T) = (ao(Ty) + a1 (T1) + bo(T7) + b1(Ty) + e(Ty)) (ao(Ty) + a1 (T;) + bo (L) + b1 (L) + e(T7))
— bi(Th)e(T) — e(T1)b1(T}),

a1 (T) = ao(T1) (ao(Tr) + a1 (Ty) + bo(Ty) + bi(Tr)) + (ao(T7) + a1(T1) + bo(T1) + b1 (T7))ao(Ty),
bO(T) - bl(ﬂ)e(Tr) + e(Tl)bl (Tr)a
b1(T) = ao(Tq)e(T),) + e(T1)ap(T}). (Note: e(T) is 1 if T is the empty tree, and O otherwise.)

It is useful to write this recursion in matrix form: associating a vector
T
v(T) = [ao(T),a1(T), bo(T), by (T), e(T)]
to a tree 7', we have v(T') = B(v(T}),v(T})), where the map B : R®> x R® — R® is defined by

EIES (v + w1 + 21 + 1 + z1)(va + wa + o + Y2 + 22) — Y122 — 2192 |
wy | |ws (v1 +uwn + 1 + y1)v2 + vi(ve + w2 + T2 + Y2)
B(|z1|,|z2]|)= Y122 + 21Y2
hn Y2 U122 + Z1VU2
| z1| | 22| i 0 |

Note that B is a bilinear map: we have
B(vy +wy,vo + Ws3) = B(vy,va) + B(wy,va) + B(vy, w2) + B(wy, wa)

and
B(C]V], EQVQ) = ﬂ]_CgB(V]_, VQ].

Furthermore the vector associated with the empty tree is [0,0,0,0,1]7.



Theorem 6. The mazimum number M, of legal matchings in a tree with n nodes is O(a™) with @ = (13384 +
8/2793745)1/22 ~ 1.58945.

Proof. There exists a set S of 62 5-dimensional vectors with nonnegative entries that have the following property:
(1) Tt contains the vector [0,0,0,0,1/a]”

(2) For any pair of two vectors vi,vs € S, the vector B(vy,ve) lies in the set

conv<(S) = {w ER’:w>0,w< Z ¢y Vv for some constants ¢, > 0, ch = 1}.
veES vES

Here, the inequalities hold componentwise. Note that conv<(S) is a bounded and convex set by construction.




Theorem 6. The mazimum number M, of legal matchings in a tree with n nodes is O(a™) with @ = (13384 +
8v/ 2793745)1/22 ~ 1.58945.

Proof. There exists a set S of 62 5-dimensional vectors with nonnegative entries that have the following property:

(1) Tt contains the vector [0,0,0,0,1/a]”,

(2) For any pair of two vectors vi,vs € S, the vector B(vy,ve) lies in the set

conv<(S) = {w ER’:w>0,w< Z ¢y Vv for some constants ¢, > 0, ch = 1}.
veES vES

Here, the inequalities hold componentwise. Note that conv<(S) is a bounded and convex set by construction.
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Theorem 6. The maximum number M, of legal matchings in a tree with n nodes is O(a™) with a = (13384 +
81/2793745)1/22 ~ 1.58945.

Proof. There exists a set S of 62 5-dimensional vectors with nonnegative entries that have the following property:
(1) Tt contains the vector [0,0,0,0,1/a]”,

(2) For any pair of two vectors vi,vs € S, the vector B(vy,ve) lies in the set

conv<(S)={weR’ : w>0,w< Z cy v for some constants ¢, > 0, ch =1}.
veES vES

Here, the inequalities hold componentwise. Note that conv<(S) is a bounded and convex set by construction.




Theorem 6. The mazimum number M, of legal matchings in a tree with n nodes is O(a™) with @ = (13384 +
8v/2793745)1/22 ~ 1.58945.

Proof. There exists a set S of 62 5-dimensional vectors with nonnegative entries that have the following property:
(1) Tt contains the vector [0,0,0,0,1/a]T,

(2) For any pair of two vectors vi,vs € S, the vector B(vy,vs) lies in the set

conv<(S) = {w ER’:w>0,w< Z ¢y Vv for some constants ¢, > 0, Z Cy = 1}

veS vES

The proof subsequently
leverages these two
properties (1) and (2) to
prove by induction that
a™1v(T) lies in conv(S)



 Sketch of inductive proof that a™1v(T) is in conv(S)

« Assume that the left child v, has k nodes and the right child v, has n-k-1
nodes.

«a™y(T) =a"1B(vy, V,)=B(aklv, a™kv,)
* By induction a*1v, and a*v, both lie in conv(S).

* So a*lv, and a"v, are both coordinate-dominated by convex sums of
the vectors S ={s;, s,... }

« Due to bilinearity of B (and non-negativity) we have that B( a*1v,, a"*v, )
IS coordinate-dominated by the application of B to these two convex sums.

* Also due to bilinearity, the application of B to these two convex sums can
then be re-written as a convex sum over B('s;, S;) vectors.

* Each B(s;, s;) vector is (by definition) in conv(S), and conv(S) is convex,
so a™ly(T) isin conv(S) O



Theorem 6. The mazimum number M, of legal matchings in a tree with n nodes is O(a™) with @ = (13384 +
8v/2793745)1/22 ~ 1.58945.

Proof. There exists a set S of 62 5-dimensional vectors with nonnegative entries that have the following property:
(1) Tt contains the vector [0,0,0,0,1/a]T,

(2) For any pair of two vectors vi,vs € S, the vector B(vy,vs) lies in the set

conv<(S) = {w ER’:w>0,w< Z ¢y Vv for some constants ¢, > 0, Z Cy = 1}

veS veS
The proof subsequently So [a,a™?, a,a?, byar™L, b,a™t,ea?] is bounded...
leverages these two
properties (1) and (2)to .80 a, ay, by, b, are O(a")...

prove by induction that
a™1v(T) lies in conv(S) ... S0 ay+ a; + by+ b; = number of legal matchings is O(a")!



» The recurrence can easily be leveraged to efficiently list these legal
matchings, and thus to list relevant convex X-colourings; this yields an
algorithm for dmp2 with running time O*(1.5895").

« Can we bound the number of legal matchings more accurately?

* No! There are trees that have ©(1.5895") legal matchings, so this is the
best we can do with this particular approach:
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Figure 10: Construction of a sequence of trees with many legal matchings.
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* Note that in a tree with no adjacent degree-2 nodes, every matching is
legal, and every legal matching is (vacuously) a matching.

» Corollary: So trees with maximum degree 3 and without adjacent degree-2
nodes, have at most O(1.5895") matchings — note here we are talking about
normal matchings, not legal matchings.

 This bound is sharp, because the lower bound construction on the previous
slide is such a degree-constrained tree (so legal matchings < matchings).

* This lies between the O(1.6181") bound on matchings for general trees,
and the O(1.5538") bound for trees where all internal nodes have degree 3;
new result!



« Going further...

« How about eliminating ever larger ‘islands of illegality’? That is, excluding
ever-larger families of convex X-colourings, that do not help when searching
for optimal solutions to dmp2?

* By eliminating slightly larger ‘islands of illegality’ we get a set of vectors in
R13 (rather than R®) and with the help of Mathematica and linear
programming, things can also be shown to work out.

 This improves the bound to O(1.5833") but everything starts to get rather
messy and unwieldy...

* Better than O(1.5603") is, in any case, provably not possible, even if all
forms of illegality are excluded (construction not shown today).



 Conclusions and future work

* We obtained a O*(1.6181") and then O*(1.5895") algorithm for computing
dmp2 on binary phylogenetic trees, using enumeration. Corollary: a new
upper bound on the number of matchings in degree-restricted binary trees.

A 2-colour X-colouring might have multiple optimal extensions, and hence
the mapping from 2-colour X-colourings to convex X-colourings is one-to-
many. Currently we rediscover such 2-colour X-colourings many times, which
IS pointless. Can we eliminate this waste?

* Is there an elegant way to generate and analyse the recursions as we
eliminate ever larger ‘islands of illegality’?

* This is a lot of heavy enumerative combinatorics to obtain a O*(1.5895")
algorithm for dmp?2! Probably better algorithms can be obtained by designing
an algorithm that is not simply based on enumeration.

» See also: recent kernelization (FPT) results by Deen et al.



Thank you for listening!



Given this property of S, we can now prove the following by induction on n: for every rooted binary tree T with
n nodes, the vector a~"~!v(T) lies in conv<(S). This is trivial for n = 0, since we get the vector [0,0,0,0,1/a]” for
the empty tree, which lies in & by praperty_(lj and thus in turn in conv<(S). For the induction step, we can apply
property (2) of §. Assume that the two branches 77 and T (possibly empty) of T satisfy the statement, and let them

have k and n — k — 1 nodes respectively. We have

a " (T)=a " 'B(vy,v2) = B{ﬁ_k_lvlﬁﬂ_mrk"?)-

-1 —n—+k

By the induction hypothesis, both a=%~1v; and a
elements of & with nonnegative coefficients such that

a_k_lvlii E CE,”V
veSs

vy lie in conv<(S), so there exist linear combinations of the

and
a "y, < Z cf)v,
vES

thus by (bi-)linearity of B

a " (T) = Bla ™ v, a7 yy)

< Z Z V2 B(v, w).
vES

weESs

Since B(v,w) € conv<(S) for all v and w and conv<(S) is convex, it follows that o™ " 'v(T) € conv<(S), completing
the induction.

In particular, we have shown that the entries of the vector o~ " 'v(T) are bounded. The total number of legal
matchings of 7" is the sum of the entries of v(T'), so it follows that this number is O(a™). UJ
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