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• Phylogenetic trees summarise the evolution of a set of species X.



• The central goal of phylogenetics is to infer these trees from e.g. DNA 

data.

• However, phylogenetics software often generates several topologically 

distinct (“incongruent”) trees.

• Important to quantify incongruence i.e. in how far two (or more) trees 

differ from each other topologically.





• Optimization problem: “maximum parsimony distance on 2 colours” 

• Given two trees T, T’ on leaf labels X, this asks us – informally! - to find a 

colouring of X with two colours {red, blue} such that in one of the trees the 

colouring induces ‘many’ bichromatic edges, and in the other tree the 

colouring induces ‘few’ bichromatic edges.

• The goal is to maximize the absolute difference in the number of induced 

bichromatic edges.

• Quick example, then formal definitions follow.
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5 bichromatic edges 2 bichromatic edges

Absolute difference is 3
No leaf colouring can create a bigger absolute difference, so the trees have distance 3



• A character f is simply a colouring of X.

• Can also be viewed simply as a partition of X, where colours = blocks.

• I will henceforth refer to characters as X-colourings.

• An extension of an X-colouring f to a tree T (on X), is an expansion of f to 

also include the interior nodes of T.

• The parsimony score of a tree T (on X), with respect to f, is the minimum 

number of bichromatic edges, ranging over all extensions of f to T. This is 
denoted lf(T). An extension is optimal if it achieves this minimum.

• Given T and T’, both on X, we want to compute

dmp2(T,T’) = Maxf | lf(T)– lf(T’) |

….where here f ranges over all 2-colour X-colourings (i.e. bipartitions of X).

• NP-hard (and APX-hard) problem! Trivial O*(2n) algorithm.



• Today we show an improvement to O*(1.6181n), where here n=|X|.

• … and then to O*(1.5895n).

• These results are based on enumeration of so-called convex X-colourings 

(“convex characters” in the phylogenetics literature).

• An X-colouring is convex on T, if the spanning trees induced by the colours 

– one spanning tree per colour - are vertex disjoint in T.



Convex X-colouring { {1,8,4}, {3}, {9,2,7,5}, {0}, {6} } on T

- spanning trees are disjoint

T



Non-convex X-colouring { {1,8,4,0}, {3}, {9,2,7,5}, {6} } on T

- spanning trees are not disjoint

T



• Today we show an improvement to O*(1.6181n), where here n=|X|.

• … and then to O*(1.5895n).

• These results are based on enumeration of so-called convex X-colourings 

(“convex characters” in the phylogenetics literature).

• An X-colouring is convex on T, if the spanning trees induced by the colours 

– one spanning tree per colour - are vertex disjoint in T.

• Note that dmp2 seeks a 2-colour X-colouring that maximizes absolute 

difference in the number of induced bichromatic edges. These 2-colourings 

are not necessarily convex! We will enumerate convex X-colourings and then 

carefully project them back onto 2-colour X-colourings.

• This also gives us an interesting corollary!



• Recall: in a graph, a matching is simply a subset of mutually disjoint edges.

• Arbitrary trees on n nodes can have O(1.6181n) matchings (consider: 

paths), this is well known.

• Regular 3-trees have O(1.5538n) matchings, where the base of the 

exponent is 1 + 2. This is also known.

• New corollary: trees with maximum degree 3, where there are no 

adjacent degree-2 nodes, have at most O(1.5895n) matchings, and this 

bound is sharp.

• But let’s first start at the beginning.



• Consider an optimal 2-colour X-colouring f2, i.e. one which maximizes the 

absolute difference of parsimony scores between the input trees T and T’.

• Consider, now, an optimal extension of f2 to T (i.e. an extension with a 

minimum number of bichromatic edges).

• Suppose there is an internal node u of T where two or three of its neighbours 

have a different colour to u…

• Then we get a contradiction on the assumed optimality of the extension; if 

you flip the colour of u, you get an extension with fewer bichromatic edges.

• As a result, we can assume the existence of an optimal 2-colour X-colouring, 

and an optimal extension of that X-colouring, in which internal nodes of T

always lie on the interior of a red path or on the interior of a blue path.

uu



5 bichromatic edges 2 bichromatic edges

• Next: observe that deleting the bichromatic edges in an optimal extension, 

on the tree with lower parsimony score, induces a new partition of X.

• Here, the induced partition is {{5,7,2,4,1}, {8}, {3,9,0,6}}.

• What if we flip the colour of 8, to red?

• Parsimony score drops by at least 1 in this tree,

but can decrease in the other tree by at most 1. 

Recall: we assumed that this tree already had

the lower parsimony score.

So the absolute difference between the 

trees does not decrease.

So we have a new optimal 2-colour X-colouring

(that induces fewer singleton components)!



1 bichromatic edge

• Next: observe that deleting the bichromatic edges in an optimal extension, 

on the tree with lower parsimony score, induces a new partition of X.

• Here, the induced partition is {{5,7,2,4,1}, {8}, {3,9,0,6}}.

• What if we flip the colour of 8, to red?

• Parsimony score drops by at least 1 in this tree,

but can decrease in the other tree by at most 1. 

Recall: we assumed that this tree already had

the lower parsimony score.

So the absolute difference between the 

trees does not decrease.

So we have a new optimal 2-colour X-colouring

(that induces fewer singleton components)!



• By iterating this process, we eventually arrive at an optimal 2-colour X-

colouring, and an optimal extension of that X-colouring, where…

• Every internal node lies on the interior of a red path or a blue path;

•The new partition of X induced by deleting bichromatic edges of an 

optimal extension of the X-colouring, is such that every block of the 

partition contains at least 2 labels from X.



• We can relabel the blocks of the new partition of X induced by deleting 

bichromatic edges, by unique colours. So if there were b bichromatic edges, 

there are b+1 colours.

• Such an X-colouring is a convex X-colouring, in which every colour appears 

on at least 2 labels of X, and such that the spanning trees for these colours 

cover every internal node of T.

• (In fact, the spanning trees for these colours are provably the only optimal 

extension for this convex X-colouring.)



• Note that, if you could find this specific convex X-colouring, you could easily 

map it back without ambiguity to the optimal 2-colour X-colouring (this is 

critical!)
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critical!)



• There are ϴ(1.6181n) convex X-colourings with at least two labels from X

per colour, and they can be listed efficiently [K. and Stamoulis, 2019]

• This gives us the simple, enumeration-based algorithm we need with 

running time ϴ*(1.6181n). 

1) ‘Guess’ the tree from {T,T’} with lower parsimony score at optimality;

2) Loop through all convex X-colourings (on that tree) with at least two labels 

from X per colour:

• …In each case, map it to the corresponding, uniquely defined 2-colour 

X-colouring, and note how good this 2-colour X-colouring is in terms of 

the absolute difference in parsimony scores between the two trees.

3) Pick the best such 2-colour X-colouring that we find.



• Let’s do better!

• We will still enumerate convex X-colourings (with each colour appearing on 

at least two labels of X), but we will discard some ‘useless’ part of this space.

• First: we can prove that if you take an optimal extension of an optimal 

convex X-colouring (i.e. one that maps back to an optimal 2-colour X-

colouring), the bichromatic edges are a matching on T. Also, no matching 

edge is incident to a leaf of T.

convex X-colouring {{a,b}, {c,d,e}, {f,g}}

bichromatic edges are shown in black,

forming a matching

T



• Let Tcore be the tree obtained by deleting the leaves of T.

• The convex X-colourings we are (potentially) interested in, are in bijection

with the space of matchings on Tcore.

• So upper bounds on the number of matchings in Tcore, can be translated into 

bounds on the number of relevant convex X-colourings in T, and thus to new 

bounds on the running time of the dmp2 algorithm.

T Tcore



• Problem: if Tcore  is a path, then there can still be ϴ(1.6181n) matchings and 

thus, also, an equal number of relevant convex X-colourings on T; does not 

help to improve the bound 

• But! We can leverage some additional insights about the structure of 

optimal solutions to the dmp2 problem.



Conclusion: it is not necessary to 

consider any matchings in Tcore

that have this structure, so exclude 

them!

• Problem: if Tcore  is a path, then there can still be ϴ(1.6181n) matchings and 

thus, also, an equal number of relevant convex X-colourings on T; does not 

help to improve the bound 

• But! We can leverage some additional insights about the structure of 

optimal solutions to the dmp2 problem.



• Let us call matchings that do not have this ‘island’ sub-structure, legal

matchings.

• How many legal matchings can there be in a tree with n nodes?

• We can establish a recurrence for this, and subsequently bound the rate of 

growth of the recurrence using techniques from these SODA articles:



root

root child

root grandchild

b0 - root has one child, and one 

grandchild; edge between child and 

grandchild is a matching edge

b1 - root has one child, and the          

root-child edge is a matching edge

a0 - legal matchings (excluding b0)

where there is no matching edge 

incident to the root

a1 - legal matchings (excluding b1)

where there is a matching edge

incident to the root



(Note: e(T) is 1 if T is the empty tree, and 0 otherwise.)

T

Tl
Tr



(Note: e(T) is 1 if T is the empty tree, and 0 otherwise.)









The proof subsequently 

leverages these two 

properties (1) and (2) to 

prove by induction that

α-n-1v(T) lies in conv≤(S)



• Sketch of inductive proof that α-n-1v(T) is in conv≤(S)

• Assume that the left child v1 has k nodes and the right child v2 has n-k-1

nodes.

• α-n-1v(T) = α-n-1 B( v1, v2 ) = B( α-k-1 v1, α
-n+k v2 ) 

• By induction α-k-1 v1  and α-n+k v2 both lie in conv≤(S).

• So α-k-1 v1  and α-n+k v2 are both coordinate-dominated by convex sums of 

the vectors S ={s1, s2… }

• Due to bilinearity of B (and non-negativity) we have that B( α-k-1 v1, α
-n+k v2 )

is coordinate-dominated by the application of B to these two convex sums.

• Also due to bilinearity, the application of B to these two convex sums can 

then be re-written as a convex sum over B( si, sj ) vectors. 

• Each B( si, sj ) vector is (by definition) in conv≤(S), and conv≤(S) is convex, 

so α-n-1v(T) is in conv≤(S)   □



The proof subsequently 

leverages these two 

properties (1) and (2) to 

prove by induction that

α-n-1v(T) lies in conv≤(S)

So [a0α
-n-1, a1α

-n-1, b0α
-n-1, b1α

-n-1,eα-n-1] is bounded…

…so a0, a1, b0, b1 are O(αn)…

… so a0 + a1 + b0 + b1 = number of legal matchings is O(αn)!



• The recurrence can easily be leveraged to efficiently list these legal 

matchings, and thus to list relevant convex X-colourings; this yields an 

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the 

best we can do with this particular approach:

22 nodes



• The recurrence can easily be leveraged to efficiently list these legal 

matchings, and thus to list relevant convex X-colourings; this yields an 

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the 

best we can do with this particular approach:
10144 matchings 

cover this edge;

19888 matchings do 

not cover this edge

22 nodes



• The recurrence can easily be leveraged to efficiently list these legal 

matchings, and thus to list relevant convex X-colourings; this yields an 

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the 

best we can do with this particular approach:
10144 matchings 

cover this edge;

19888 matchings do 

not cover this edge

22 nodes



• The recurrence can easily be leveraged to efficiently list these legal 

matchings, and thus to list relevant convex X-colourings; this yields an 

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the 

best we can do with this particular approach:
10144 matchings 

cover this edge;

19888 matchings do 

not cover this edge

22 nodes



• The recurrence can easily be leveraged to efficiently list these legal 

matchings, and thus to list relevant convex X-colourings; this yields an 

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the 
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• The recurrence can easily be leveraged to efficiently list these legal 

matchings, and thus to list relevant convex X-colourings; this yields an 

algorithm for dmp2 with running time O*(1.5895n).

• Can we bound the number of legal matchings more accurately?

• No! There are trees that have ϴ(1.5895n) legal matchings, so this is the 

best we can do with this particular approach:

22 nodes

Larger eigenvalue ≈ 1.589522

Legal matchings ≈ 1.589522k

k ≈ n/22



• Note that in a tree with no adjacent degree-2 nodes, every matching is 

legal, and every legal matching is (vacuously) a matching. 

• Corollary: So trees with maximum degree 3 and without adjacent degree-2 

nodes, have at most O(1.5895n) matchings – note here we are talking about 

normal matchings, not legal matchings. 

• This bound is sharp, because the lower bound construction on the previous 

slide is such a degree-constrained tree (so legal matchings  matchings).

• This lies between the O(1.6181n) bound on matchings for general trees, 

and the O(1.5538n) bound for trees where all internal nodes have degree 3; 

new result!



• Going further…

• How about eliminating ever larger ‘islands of illegality’? That is, excluding 

ever-larger families of convex X-colourings, that do not help when searching 

for optimal solutions to dmp2?

• By eliminating slightly larger ‘islands of illegality’ we get a set of vectors in 

ℝ13 (rather than ℝ5) and with the help of Mathematica and linear 

programming, things can also be shown to work out.

• This improves the bound to O(1.5833n) but everything starts to get rather 

messy and unwieldy…

• Better than O(1.5603n) is, in any case, provably not possible, even if all 

forms of illegality are excluded (construction not shown today).



• Conclusions and future work

• We obtained a O*(1.6181n) and then O*(1.5895n) algorithm for computing 

dmp2 on binary phylogenetic trees, using enumeration. Corollary: a new 

upper bound on the number of matchings in degree-restricted binary trees.

• A 2-colour X-colouring might have multiple optimal extensions, and hence 

the mapping from 2-colour X-colourings to convex X-colourings is one-to-

many. Currently we rediscover such 2-colour X-colourings many times, which 

is pointless. Can we eliminate this waste?

• Is there an elegant way to generate and analyse the recursions as we 

eliminate ever larger ‘islands of illegality’?

• This is a lot of heavy enumerative combinatorics to obtain a O*(1.5895n) 

algorithm for dmp2! Probably better algorithms can be obtained by designing 

an algorithm that is not simply based on enumeration.

• See also: recent kernelization (FPT) results by Deen et al.



Thank you for listening!
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Legal matchings:


