
I’m only happy when it rains: why
negative results in computer science

should be celebrated, not feared!

MSV Incognito guest lecture

Steven Kelk, DKE

Disclaimer

• I am currently in grant-writing mode

• Due to lack of sleep and general stress I am
currently in some kind of half-waking dream
state

• So if this seems like one big stream of
consciousness, that’s because it is

This is a talk about…

• Computational hardness

• Models

• Star Wars

• Philosophy

Take-home message

“Only when you
understand the limit
of what is possible,
Can you understand
how well, done, you
have. Hmmmmmm.”

Computational hardness

• In computer science, “hardness” has a specific
meaning.

• Example: maximum clique

• Input: An undirected graph G on n vertices

• Output: The size of the largest clique (i.e.
complete subgraph) in G

not a clique non-maximum clique maximum clique

Computational hardness

• In computer science, “hardness” has a specific
meaning.

• Example: maximum clique

• There is no polynomial-time (i.e. “fast”)
algorithm that can solve maximum clique,
unless P=NP. (Karp 1972)

Computational hardness

• Can we find an “almost maximum” clique in
reasonable time?

• More formally, we say that an algorithm has
approximation ratio c if, for every input graph
G,

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑙𝑖𝑞𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝐺

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑐𝑙𝑖𝑞𝑢𝑒 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑜𝑢𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
≤ 𝑐

• A ratio of n is trivial to achieve.

J. Håstad, Clique is hard to
approximate within 𝑛1−𝜀, Acta

Mathematica 182, 105-142
(1999)

J. Håstad, Clique is hard to
approximate within 𝑛1−𝜀, Acta

Mathematica 182, 105-142
(1999)

…so in a very formal sense returning a
single vertex is best possible

Embrace the darkness…drink deep from
the sweet cup of futility and surrender

(This might just be a personal thing though)

Computational hardness

• Hardness has its roots in the impossibility
theorems of Godel and Turing/Church.

• Godel: Incompleteness theorems

• Turing/Church: Negative answer to the
Entscheidungsproblem (which led to the
definition of the Universal Turing Machine –
the mathematical foundation of the modern
computer)

Computational hardness

• These were clearly “negative results”, but a
whole different type to negative results in e.g.
statistics:

“We did some stuff. The

results were not significant at

the p=0.05 level. Shit.”

Computational hardness

• These were clearly “negative results”, but a
whole different type to negative results in e.g.
statistics:

“We did some stuff. The

results were not significant at

the p=0.05 level. Shit.”

Computational hardness

• The next phase of computational hardness
emerged in the 1970s: NP-completeness

• This arose as a response to the realisation that
some “reasonable” computational problems
seemed to require exponential (rather than
polynomial) running time, e.g. SATisfiability.

Computational hardness

• If any NP-complete problem can be solved in
polynomial time, then all problems in NP (the
class of “reasonable problems”) can be solved
in polynomial time i.e. P=NP

• If we can prove that at least one NP-complete
problem requires at least superpolynomial
time, then all the NP-complete problems have
this property, and P≠ NP

Computational hardness

• There are very many NP-complete problems,
and although the majority of scientists believe
that they cannot be solved in polynomial time,
after 40 years we are not even close to
proving this

• In the meantime, proving that a new problem
X can “simulate” an NP-complete problem Y, is
proof that X is intractable, assuming P≠ NP

• Conditional hardness results

The cover of this
book could have
been any colour.

The cover of this
book could have
been any colour.

But it was destined
to be black.

Well-known use of hardness results

• “Hey DKE student! I employ you to write fast
code, not to look at pictures of cats all day!
Why haven’t you come up with a fast exact
algorithm yet?”

(From: Garey and Johnson)

Let’s be mindful

“You, buy happiness,
cannot, but you can
buy books and, kind
of the same thing,
that is.”

Hardness is not the end, it’s the
beginning of an adventure

• “You probably can’t solve NP-hard problems in
polynomial time. But in practice you might be
able to solve instances of NP-hard problems
quite well by exploiting the nature of real-
world data and looking for special
mathematical structure in your particular
instances which let you overcome the
hardness, and that’s kind of the same thing.”

Hardness is not the end, it’s the
beginning of an adventure

• If a problem is hard, then this does not mean
“give up”!

• It is an invitation to find out why it is hard, and
to subsequently design advanced algorithms
to tackle it, or (much easier…) avoid it / argue
that these nasty cases do not exist in practice

Easy instances

Hard
instances

Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• Integer Linear Programming (ILP)

• Randomized algorithms

• SAT solvers, Constraint Programming (CP) etc

• Approximation algorithms

• Fixed parameter tractability

• Parallel algorithms

• Etc.

Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• I don’t personally develop heuristics, but I
understand their use.

– In many applied contexts, finding a better
solution, is already good enough (e.g. reducing
costs at a company)

– This is particularly true when the current solution
already “works” and we want to make it “better”

Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• I don’t personally develop heuristics, but I
understand their use.

– Another case when heuristics are useful is when
you are modelling a real-world process and the
heuristic “models the phenomenon well in
practice”

– I will come back to this later

Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• However, the main problem with heuristics is
that you simply have no way of knowing how
good your solution is: because we have no
model for understanding what optimal
solutions look like

Take-home message

“Only when you
understand the limit
of what is possible,
Can you understand
how well, done, you
have. Hmmmmmm.”

Although they might “work in practice”, heuristics
do not analyse the limit of what is possible

But Steven, what does this have to do
with the real world?

Let’s stop talking about hardness for a
moment

• Consider the following three problems. In a
formal sense they are “easy” – they all have
polynomial-time algorithms.

Maximum
Interval

Sum

Edit
Distance 3-SUM

Maximum
Interval

Sum

Edit
Distance 3-SUM

For each of these problems, it is reasonably
straightforward to find an algorithm with running

time 𝑂(𝑛2). After all this talk of NP-hardness, that’s
pretty good right?

Maximum
Interval

Sum

Edit
Distance 3-SUM

It depends what you mean by “good”. If the input
data is Big or even Not Small then 𝑂(𝑛2) sucks so

bad. And you call yourself a data scientist?

Maximum
Interval

Sum

Edit
Distance 3-SUM

Is it really your fault? Do you suck?

Maximum
Interval

Sum

Edit
Distance 3-SUM

How about this
one?

Maximum
Interval

Sum

Edit
Distance 3-SUM

Yes, you suck! By
applying dynamic

programming
𝑂(𝑛) is possible

Maximum
Interval

Sum

Edit
Distance 3-SUM

You missed your
chance to solve

Big Data!

Maximum
Interval

Sum:
O(n)
☺

Edit
Distance 3-SUM

How about this
one? Can we do

better than
𝑂(𝑛2) ?

Edit
Distance 3-SUM

We have no idea

Maximum
Interval

Sum:
O(n)
☺

Edit
Distance 3-SUM

We have no idea

Maximum
Interval

Sum:
O(n)
☺

Edit
Distance 3-SUM

Maximum
Interval

Sum:
O(n)
☺

How about this
one? Can we do

better than
𝑂(𝑛2) ?

Backurs and Indyk, Edit Distance
Cannot Be Computed in

Strongly Subquadratic Time
(unless SETH is false),

Proceedings of STOC 2015

Backurs and Indyk, Edit Distance
Cannot Be Computed in

Strongly Subquadratic Time
(unless SETH is false),

Proceedings of STOC 2015

SETH = Strong Exponential Time Hypothesis

Revenge of the SETH

Maximum
Interval

Sum

Edit
Distance 3-SUM

All these mad Jedi skills help us understand how
hard these problems really are - and thus, whether

𝑂(𝑛2) can be considered “good”

Maximum
Interval

Sum

Edit
Distance 3-SUM

Let’s get mathematical-philosophical

“Mathematical models
to approximate reality
we make. Implemented
as algorithms,
mathematical models
are. The output of the
algorithm model reality,
how well does, hmm?
Herh herh herh.”

Models models and more models

• In many applied sciences, mathematical
models are used to approximate reality.

• It is often the case that these models are,
implicitly or explicitly, optimization questions.

• This happens if the person who formulated
the model, believes that optimal solutions
most accurately reflect reality.

Models models and more models

• So what does it actually mean if the
algorithms that implement these
mathematical models, are not finding (or are
not guaranteed to find) optimal solutions?

• Many applied scientists who mix computers
with mathematical models forget some or all
of the following sanity checks:

Sanity checks for models

• Why do I believe that optimal solutions most
accurately model reality?

• Does this software package generate optimal
solutions? (More fundamentally: what is it trying
to optimize?!)

• If not, does it get close? How close?

• If it is not generating optimal solutions, is it the
case that “good enough” solutions model reality
“well enough”?

• What does “good enough” and “well enough”
mean? Am I using circular reasoning?

Genome sequence,
comparative analysis and
haplotype structure of the

domestic dog

Lindblad-Toh et al, Nature
2005

Building evolutionary trees with
algorithms

• There are two issues we have to get clear first.
– What is a “good” tree?

– Is it computationally tractable to construct such a
“good” tree?

• There are many different ways of addressing
these questions. The first question in particular is
highly subjective.

• There are several major families of tree-building
methods, that approach these questions in a
different way.

Building evolutionary trees with
algorithms

• Maximum Parsimony (ML)

• Maximum Likelihood (MP)

• Bayesian MCMC

• Distance measures

Species

1 (DOG) T G C

2 (CAT) T A C

3 (FISH) A G G

4 (E.COLI) A A G

The “most parsimonious” tree
solution (4 mutations).

An algorithm that computes
optimal solutions to MP, will

output this tree.

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html

Input: a multiple
alignment, one DNA

string per species

Building evolutionary trees with
algorithms

• Maximum Parsimony (ML) – NP-hard

• Maximum Likelihood (MP) – NP-hard

• Bayesian MCMC - NP-hard (essentially…)

• Distance measures – Polynomial time

Building evolutionary trees with
algorithms

• Maximum Parsimony (ML) – Heuristics

• Maximum Likelihood (MP) – Heuristics

• Bayesian MCMC - Heuristics

• Distance measures – Exact algorithms (but not
considered a “reliable” method)

Building evolutionary trees with
algorithms

• Maximum Parsimony (ML) – Heuristics

• Maximum Likelihood (MP) – Heuristics

• Bayesian MCMC - Heuristics

• Distance measures – Exact algorithms (but not
considered a “reliable” method)

• Scientists using these software tools “believe”
Bayesian, ML, MP, Distance measures in roughly
that order. (MP is no longer cool, sniff).

Building evolutionary trees with
algorithms

• But if applied scientists prefer to believe the
NP-hard models, and all the tools being used
are heuristics, what does that actually mean?

Building evolutionary trees with
algorithms

• But if applied scientists prefer to believe the
NP-hard models, and all the tools being used
are heuristics, what does that actually mean?

• The truth is complex. The trees these software
packages output must mean something,
because there are cases when all the methods
recover the same tree, and everyone believes
this is the “correct” tree.

Building evolutionary trees with
algorithms

• But my worry is that, if you are not careful,
you start (unconsciously) defining the “correct
tree” as “the same tree that this other famous
program produced” – without stopping to ask
why we believe the famous program.

Building evolutionary trees with
algorithms

• But my worry is that, if you are not careful,
you start (unconsciously) defining the “correct
tree” as “the same tree that this other famous
program produced” – without stopping to ask
why we believe the famous program.

• I guess that’s ok, because we all know that
aeroplanes can only fly because all the
passengers believe that they can ☺

Building evolutionary trees with
algorithms

• But my worry is that, if you are not careful,
you start (unconsciously) defining the “correct
tree” as “the same tree that this other famous
program produced” – without stopping to ask
why we believe the famous program.

• In practice, “stuff works”, but it’s still all a
bit…..spooky.

Finally, for the UCM students!

Finally, for the UCM students!

(They’re happy because they do PBL)

Finally, for the UCM students!

• Warning to DKE students: social science alert!

• But at the end I will in completely convincing
fashion (ha ha) try to link it back to
algorithms.

Chomsky vs Foucault

• “Human Nature: Justice versus Power: Noam
Chomsky debates with Michel Foucault,
1971.”

• Televised…on YouTube…very interesting (even
though it does not contain a cat, a robot, a
reference to Big Data or a self-driving car).

“This, for me, is the key to their fundamental differences.
Chomsky is a modernist. Foucault was a postmodernist. The
modernist believes ‘justice’ and ‘truth’ have meaning and
value independent of power. Human reason, used properly,
can lead us toward a more just society. The postmodernist, on
the other hand, believes that the meanings of the words
‘truth’ and ‘justice’ are socially constructed largely by those
with power to hold and exercise such power. “

“This, for me, is the key to their fundamental differences.
Chomsky is a modernist. Foucault was a postmodernist. The
modernist believes ‘justice’ and ‘truth’ have meaning and
value independent of power. Human reason, used properly,
can lead us toward a more just society. The postmodernist, on
the other hand, believes that the meanings of the words
‘truth’ and ‘justice’ are socially constructed largely by those
with power to hold and exercise such power. “

I’ll be honest, I’m not an expert, I found this on the internet
somewhere [by Tom Gi, https://www.quora.com/What-did-
Michel-Foucault-and-Noam-Chomsky-disagree-about], but it
sounds more or less correct to me…

“If we want a
better world we
have to propose

alternatives”

“But surely we have to be precise
about the meanings of terms like

justice and fairness – are these not a
construct of an unfair world?”

“Don’t sit around
worrying about

NP-hardness. We
need cool new

heuristics which
work well in

practice!”

“But how do you define whether one of
your heuristics works well in practice, are
you not unconsciously imposing implicit

assumptions in your model?”

“Shouldn’t you make these assumptions
explicit and question them?”

“And I have a cat.”

Foucault had a cat, he wins

I think both are right

• I’m sure a proper social scientist will tell me
this is not possible, but I think both Chomsky
and Foucault are right (to some extent)

• It’s important to make (hidden) model
assumptions explicit and clear when
proposing a better world – but one of the best
ways to actually identify these assumptions is
to actually try to build it

I think both are right

• In the same way, hardness, lower bounds,
rigorous performance guarantees are the
“Ying” of heuristics, upper bounds and
algorithms that work in practice (the “Yang”)

• One without the other has no meaning

I think both are right

• In the same way, hardness, lower bounds,
rigorous performance guarantees are the
“Ying” of heuristics, upper bounds and
algorithms that work in practice (the “Yang”)

• One without the other has no meaning

• The sound of one hand clapping….

I think both are right

• In the same way, hardness, lower bounds,
rigorous performance guarantees are the
“Ying” of heuristics, upper bounds and
algorithms that work in practice (the “Yang”)

• One without the other has no meaning

• The sound of one hand clapping….

• Thanks for listening!

