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Disclaimer

• I am currently in grant-writing mode

• Due to lack of sleep and general stress I am
currently in some kind of half-waking dream
state

• So if this seems like one big stream of 
consciousness, that’s because it is





This is a talk about…

• Computational hardness

• Models

• Star Wars

• Philosophy



Take-home message

“Only when you 
understand the limit 
of what is possible, 
Can you understand 
how well, done, you 
have.  Hmmmmmm.”



Computational hardness

• In computer science, “hardness” has a specific
meaning.

• Example: maximum clique

• Input: An undirected graph G on n vertices

• Output: The size of the largest clique (i.e. 
complete subgraph) in G



not a clique               non-maximum clique       maximum clique



Computational hardness

• In computer science, “hardness” has a specific
meaning.

• Example: maximum clique

• There is no polynomial-time (i.e. “fast”) 
algorithm that can solve maximum clique, 
unless P=NP. (Karp 1972)



Computational hardness

• Can we find an “almost maximum” clique in 
reasonable time?

• More formally, we say that an algorithm has 
approximation ratio c if, for every input graph
G,

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑐𝑙𝑖𝑞𝑢𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑎𝑝ℎ 𝐺

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑠𝑡 𝑐𝑙𝑖𝑞𝑢𝑒 𝑓𝑜𝑢𝑛𝑑 𝑏𝑦 𝑜𝑢𝑟 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
≤ 𝑐

• A ratio of n is trivial to achieve.



J. Håstad, Clique is hard to
approximate within 𝑛1−𝜀, Acta

Mathematica 182, 105-142 
(1999)
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…so in a very formal sense returning a 
single vertex is best possible



Embrace the darkness…drink deep from
the sweet cup of futility and surrender



(This might just be a personal thing though)



Computational hardness

• Hardness has its roots in the impossibility
theorems of Godel and Turing/Church.

• Godel: Incompleteness theorems

• Turing/Church: Negative answer to the
Entscheidungsproblem (which led to the 
definition of the Universal Turing Machine –
the mathematical foundation of the modern 
computer)



Computational hardness

• These were clearly “negative results”, but a 
whole different type to negative results in e.g. 
statistics:

“We did some stuff. The

results were not significant at

the p=0.05 level. Shit.”
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“We did some stuff. The

results were not significant at

the p=0.05 level. Shit.”



Computational hardness

• The next phase of computational hardness
emerged in the 1970s: NP-completeness

• This arose as a response to the realisation that
some “reasonable” computational problems
seemed to require exponential (rather than
polynomial) running time, e.g. SATisfiability.



Computational hardness

• If any NP-complete problem can be solved in 
polynomial time, then all problems in NP (the
class of “reasonable problems”) can be solved
in polynomial time i.e. P=NP

• If we can prove that at least one NP-complete 
problem requires at least superpolynomial
time, then all the NP-complete problems have 
this property, and P≠ NP



Computational hardness

• There are very many NP-complete problems, 
and although the majority of scientists believe
that they cannot be solved in polynomial time, 
after 40 years we are not even close to
proving this

• In the meantime, proving that a new problem
X can “simulate” an NP-complete problem Y, is 
proof that X is intractable, assuming P≠ NP

• Conditional hardness results





The cover of this
book could have
been any colour.



The cover of this
book could have
been any colour.

But it was destined
to be black.



Well-known use of hardness results

• “Hey DKE student! I employ you to write fast
code, not to look at pictures of cats all day! 
Why haven’t you come up with a fast exact 
algorithm yet?”



(From: Garey and Johnson)





Let’s be mindful

“You, buy happiness,  
cannot, but you can 
buy books and, kind 
of the same thing, 
that is.”



Hardness is not the end, it’s the
beginning of an adventure

• “You probably can’t solve NP-hard problems in 
polynomial time. But in practice you might be
able to solve instances of NP-hard problems
quite well by exploiting the nature of real-
world data and looking for special 
mathematical structure in your particular
instances which let you overcome the
hardness, and that’s kind of the same thing.”



Hardness is not the end, it’s the
beginning of an adventure

• If a problem is hard, then this does not mean
“give up”!

• It is an invitation to find out why it is hard, and
to subsequently design advanced algorithms
to tackle it, or (much easier…) avoid it / argue
that these nasty cases do not exist in practice



Easy instances

Hard
instances



Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• Integer Linear Programming (ILP)

• Randomized algorithms

• SAT solvers, Constraint Programming (CP) etc

• Approximation algorithms

• Fixed parameter tractability

• Parallel algorithms

• Etc.













Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• I don’t personally develop heuristics, but I 
understand their use.

– In many applied contexts, finding a better
solution, is already good enough (e.g. reducing 
costs at a company)

– This is particularly true when the current solution 
already “works” and we want to make it “better”



Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• I don’t personally develop heuristics, but I 
understand their use.

– Another case when heuristics are useful is when 
you are modelling a real-world process and the 
heuristic “models the phenomenon well in 
practice”

– I will come back to this later



Techniques for tackling hardness

• (Meta-)heuristics (“Hit and hope…”)

• However, the main problem with heuristics is 
that you simply have no way of knowing how 
good your solution is: because we have no 
model for understanding what optimal
solutions look like



Take-home message

“Only when you 
understand the limit 
of what is possible, 
Can you understand 
how well, done, you 
have.  Hmmmmmm.”

Although they might “work in practice”, heuristics 
do not analyse the limit of what is possible



But Steven, what does this have to do 
with the real world?



Let’s stop talking about hardness for a 
moment

• Consider the following three problems. In a 
formal sense they are “easy” – they all have 
polynomial-time algorithms.



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

For each of these problems, it is reasonably 
straightforward to find an algorithm with running 

time 𝑂(𝑛2). After all this talk of NP-hardness, that’s 
pretty good right?



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

It depends what you mean by “good”. If the input 
data is Big or even Not Small then 𝑂(𝑛2) sucks so 

bad. And you call yourself a data scientist?



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

Is it really your fault? Do you suck?



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

How about this 
one?



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

Yes, you suck! By 
applying dynamic 

programming 
𝑂(𝑛) is possible



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

You missed your 
chance to solve 

Big Data!



Maximum 
Interval 

Sum:
O(n)
☺

Edit 
Distance 3-SUM

How about this 
one? Can we do 

better than 
𝑂(𝑛2) ?



Edit 
Distance 3-SUM

We have no idea 


Maximum 
Interval 

Sum:
O(n)
☺
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Edit 
Distance 3-SUM

Maximum 
Interval 

Sum:
O(n)
☺

How about this 
one? Can we do 

better than 
𝑂(𝑛2) ?





Backurs and Indyk, Edit Distance 
Cannot Be Computed in 

Strongly Subquadratic Time 
(unless SETH is false), 

Proceedings of STOC 2015
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SETH = Strong Exponential Time Hypothesis



Revenge of the SETH



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM

All these mad Jedi skills help us understand how 
hard these problems really are - and thus, whether 

𝑂(𝑛2) can be considered “good”



Maximum 
Interval 

Sum

Edit 
Distance 3-SUM



Let’s get mathematical-philosophical

“Mathematical models 
to approximate reality 
we make.  Implemented 
as algorithms, 
mathematical models 
are.  The output of the 
algorithm model reality, 
how well does, hmm?  
Herh herh herh.”



Models models and more models

• In many applied sciences, mathematical
models are used to approximate reality.

• It is often the case that these models are, 
implicitly or explicitly, optimization questions.

• This happens if the person who formulated
the model, believes that optimal solutions
most accurately reflect reality.



Models models and more models

• So what does it actually mean if the
algorithms that implement these 
mathematical models, are not finding (or are 
not guaranteed to find) optimal solutions?

• Many applied scientists who mix computers 
with mathematical models forget some or all
of the following sanity checks:



Sanity checks for models

• Why do I believe that optimal solutions most 
accurately model reality?

• Does this software package generate optimal
solutions? (More fundamentally: what is it trying
to optimize?!)

• If not, does it get close? How close?

• If it is not generating optimal solutions, is it the
case that “good enough” solutions model reality
“well enough”?

• What does “good enough” and “well enough” 
mean? Am I using circular reasoning?



Genome sequence, 
comparative analysis and 
haplotype structure of the 

domestic dog

Lindblad-Toh et al, Nature 
2005



Building evolutionary trees with 
algorithms

• There are two issues we have to get clear first.
– What is a “good” tree?

– Is it computationally tractable to construct such a 
“good” tree?

• There are many different ways of addressing 
these questions. The first question in particular is 
highly subjective.

• There are several major families of tree-building 
methods, that approach these questions in a 
different way.



Building evolutionary trees with 
algorithms

• Maximum Parsimony (ML)

• Maximum Likelihood (MP)

• Bayesian MCMC

• Distance measures



Species

1 (DOG) T G C

2 (CAT) T A C

3 (FISH) A G G

4 (E.COLI) A A G

The “most parsimonious” tree 
solution (4 mutations).

An algorithm that computes 
optimal solutions to MP, will 

output this tree.

From: http://artedi.ebc.uu.se/course/X3-2004/Phylogeny/Exercises/mp.html

Input: a multiple 
alignment, one DNA 

string per species



Building evolutionary trees with 
algorithms

• Maximum Parsimony (ML) – NP-hard

• Maximum Likelihood (MP) – NP-hard

• Bayesian MCMC - NP-hard (essentially…)

• Distance measures – Polynomial time



Building evolutionary trees with 
algorithms

• Maximum Parsimony (ML) – Heuristics

• Maximum Likelihood (MP) – Heuristics

• Bayesian MCMC - Heuristics

• Distance measures – Exact algorithms (but not 
considered a “reliable” method)



Building evolutionary trees with 
algorithms

• Maximum Parsimony (ML) – Heuristics

• Maximum Likelihood (MP) – Heuristics

• Bayesian MCMC - Heuristics

• Distance measures – Exact algorithms (but not 
considered a “reliable” method)

• Scientists using these software tools “believe” 
Bayesian, ML, MP, Distance measures in roughly 
that order. (MP is no longer cool, sniff).



Building evolutionary trees with 
algorithms

• But if applied scientists prefer to believe the 
NP-hard models, and all the tools being used 
are heuristics, what does that actually mean?



Building evolutionary trees with 
algorithms

• But if applied scientists prefer to believe the 
NP-hard models, and all the tools being used 
are heuristics, what does that actually mean?

• The truth is complex. The trees these software 
packages output must mean something, 
because there are cases when all the methods 
recover the same tree, and everyone believes 
this is the “correct” tree.



Building evolutionary trees with 
algorithms

• But my worry is that, if you are not careful, 
you start (unconsciously) defining the “correct 
tree” as “the same tree that this other famous 
program produced” – without stopping to ask 
why we believe the famous program.



Building evolutionary trees with 
algorithms

• But my worry is that, if you are not careful, 
you start (unconsciously) defining the “correct 
tree” as “the same tree that this other famous 
program produced” – without stopping to ask 
why we believe the famous program.

• I guess that’s ok, because we all know that 
aeroplanes can only fly because all the 
passengers believe that they can ☺



Building evolutionary trees with 
algorithms

• But my worry is that, if you are not careful, 
you start (unconsciously) defining the “correct 
tree” as “the same tree that this other famous 
program produced” – without stopping to ask 
why we believe the famous program.

• In practice, “stuff works”, but it’s still all a 
bit…..spooky.



Finally, for the UCM students!



Finally, for the UCM students!

(They’re happy because they do PBL)



Finally, for the UCM students!

• Warning to DKE students: social science alert!

• But at the end I will in completely convincing 
fashion (ha ha) try to link it back to 
algorithms.



Chomsky vs Foucault

• “Human Nature: Justice versus Power: Noam 
Chomsky debates with Michel Foucault, 
1971.”

• Televised…on YouTube…very interesting (even 
though it does not contain a cat, a robot, a 
reference to Big Data or a self-driving car).





“This, for me, is the key to their fundamental differences. 
Chomsky is a modernist. Foucault was a postmodernist. The 
modernist believes ‘justice’ and ‘truth’ have meaning and 
value independent of power. Human reason, used properly, 
can lead us toward a more just society. The postmodernist, on 
the other hand, believes that the meanings of the words 
‘truth’ and ‘justice’ are socially constructed largely by those 
with power to hold and exercise such power. “



“This, for me, is the key to their fundamental differences. 
Chomsky is a modernist. Foucault was a postmodernist. The 
modernist believes ‘justice’ and ‘truth’ have meaning and 
value independent of power. Human reason, used properly, 
can lead us toward a more just society. The postmodernist, on 
the other hand, believes that the meanings of the words 
‘truth’ and ‘justice’ are socially constructed largely by those 
with power to hold and exercise such power. “

I’ll be honest, I’m not an expert, I found this on the internet 
somewhere [by Tom Gi, https://www.quora.com/What-did-
Michel-Foucault-and-Noam-Chomsky-disagree-about], but it 
sounds more or less correct to me…



“If we want a 
better world we 
have to propose 

alternatives”



“But surely we have to be precise 
about the meanings of terms like 

justice and fairness – are these not a 
construct of an unfair world?”



“Don’t sit around 
worrying about 

NP-hardness. We 
need cool new 

heuristics which 
work well in 

practice!”



“But how do you define whether one of 
your heuristics works well in practice, are 
you not unconsciously imposing implicit 

assumptions in your model?”



“Shouldn’t you make these assumptions 
explicit and question them?”



“And I have a cat.”



Foucault had a cat, he wins



I think both are right

• I’m sure a proper social scientist will tell me 
this is not possible, but I think both Chomsky 
and Foucault are right (to some extent)

• It’s important to make (hidden) model 
assumptions explicit and clear when 
proposing a better world – but one of the best 
ways to actually identify these assumptions is 
to actually try to build it



I think both are right

• In the same way, hardness, lower bounds, 
rigorous performance guarantees are the 
“Ying” of heuristics, upper bounds and 
algorithms that work in practice (the “Yang”)

• One without the other has no meaning
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• The sound of one hand clapping….



I think both are right

• In the same way, hardness, lower bounds, 
rigorous performance guarantees are the 
“Ying” of heuristics, upper bounds and 
algorithms that work in practice (the “Yang”)

• One without the other has no meaning

• The sound of one hand clapping….

• Thanks for listening!




