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Ernst Haeckel (1866)

Hillis, et al. (2003)

Phylogenetics 

The reconstruction and analysis of evolutionary 

trees and networks based on molecular sequence 

data or morphological characters.

Charles Darwin (1837)



Phylogenetic trees

A rooted phylogenetic tree on X 

is a rooted connected acyclic 

graph whose internal vertices 

have degree three except for 

the root which has degree two, 

and whose leaf set is X.

An (unrooted) phylogenetic tree 

on X is a connected acyclic graph 

whose internal vertices have 

degree three and whose leaf set 

is X.
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We wish to compare two trees, i.e. to quantify the dissimilarities between

them.

Distances between trees provide a lower bound on the number of

non-tree-like events, such as hybridization, which can cause the topologies

of the trees to differ. 

Distances between phylogenetic trees



Tree bisection and reconnection (TBR)



Let dTBR(T,T’) denote the minimum number of TBR operations required to 

transform T into T’. Then, d
TBR (T,T’) induces a metric on the space of all 

unrooted phylogenetic trees with n leaves. 

(Robinson, 1971; Allen and Steel, 2001).

Computing d
TBR (T,T’) is NP-hard and fixed-parameter tractable, when 

parameterized by k=d
TBR. 

(Hein et al., 1996; Allen and Steel, 2001).



Fixed-parameter tractability of d
TBR

Kernelization idea (Allen and Steel 2001): Shrink two trees to their 

common cores by applying two reduction rules. Then show that 

• the two reductions preserve the TBR distance, and

• the size (i.e. number of leaves) of the two smaller trees is 

bounded from above by a function that is linear in the TBR 

distance.

Time to decide if d
TBR

(T,T’) is at most k is

O(f(k) + p(n)).



Subtree reduction 

Allen and Steel, 2001



Chain reduction

Allen and Steel, 2001



Example



Theorem. (Allen and Steel, 2001).

[Reductions are safe] Let S and S’ be two trees obtained from T and T’ by 

applying a single subtree or chain reduction. Then

d
TBR

(T,T’) = d
TBR

(S,S’).

[Linear kernel] Let S and S’ be two trees obtained from T and T’ by 

repeated applications of the subtree and chain reduction until no further 

reduction is possible. Then

|X’| ≤ 28d
TBR

(T,T’),

where X’ is the leaf set of S and S’.



Theorem. (Allen and Steel, 2001).

[Reductions are safe] Let S and S’ be two trees obtained from T and T’ by 

applying a single subtree or chain reduction. Then

d
TBR

(T,T’) = d
TBR

(S,S’).

[Linear kernel] Let S and S’ be two trees obtained from T and T’ by 

repeated applications of the subtree and chain reduction until no further 
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|X’| ≤ 28d
TBR
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where X’ is the leaf set of S and S’.

How good is this bound/is it tight?



Today we show two things:

• We reanalyse Allen and Steel’s kernel, and show that it is considerably 

smaller than they claimed: 15d
TBR 

– 9. Moreover, this is tight.

• We devise a number of new reduction rules which, when combined with 

Allen and Steel’s reduction rules, yield a kernel of size: 11d
TBR 

– 9. This 

is also tight.



Strategy to achieve 15d
TBR 

– 9: We translate the problem of computing 

d
TBR

into a problem on phylogenetic networks (i.e. graphs), establish a 

smaller kernel that is based on the same two reductions, and show that 

this new kernel is tight.



Phylogenetic networks to the rescue

An unrooted phylogenetic tree 

on X is a connected acyclic 

graph whose internal vertices 

have degree three and whose 

leaf set is X.

An unrooted phylogenetic 

network N on X is a simple 

graph whose internal vertices 

have degree three and whose 

leaf set is X.



Phylogenetic networks to the rescue

Reticulation number of N is   

r(N) = |E| - (|V|-1).

(equal to cyclomatic number).

Example. r(N) = 3



For two trees T and T’, define the hybridization number

Where the minimum is taken over all N that embed T and T’.

Example.

(van Iersel et al., 2018).



For two trees T and T’, define the hybridization number

Where the minimum is taken over all N that embed T and T’.

Example.

(van Iersel et al., 2018).



For two trees T and T’, define the hybridization number

Where the minimum is taken over all N that embed T and T’.

Example.

(van Iersel et al., 2018).



Theorem. (van Iersel et al., 2018)

Let T and T’ be two trees. Then

d
TBR

(T,T’) = h
u
(T,T’)



Backbones of phylogenetic networks

2-generator G with 

three edges (sides)
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In general, for k≥2, a k-generator is 

a connected cubic multigraph such 

that k = |E|-(|V|-1).
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In general, for k≥2, a k-generator is 

a connected cubic multigraph such 

that k = |E|-(|V|-1).

More generally: k-generator G has

3(k-1) edges (sides)



Backbones of phylogenetic networks

2-generator G with network N with r(N)=2

three edges (sides)            with no pendant subtree

decorating G

reducing N
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Backbones of phylogenetic networks

2-generator G with network N with r(N)=2

three edges (sides)           with no pendant subtree

decorating G

reducing N
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Can we bound the number of leaves 

that decorate a single side of G?

(Can we have more than 9 leaves on 

a side?) 



Breakpoints
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Chain C=(1,2,…,9) has no

breakpoint relative to T and T’.

C survives in T and T’.
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Chain C=(1,2,…,9) has one

breakpoint relative to T and T’.

C survives in one of T and T’ and is 

broken in the other tree.
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Chain C=(1,2,…,9) has two

breakpoints relative to T and T’.

C is broken in T and T’.
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Breakpoint Lemma. (K. and Linz, 2018).

Let S and S’ be two trees with no common pendant subtree of size at least 2 

and no common chain of length at least 4. Let N be a network that embeds S 

and S’, and let C be an n-chain of N, where n is the length of C. Then

• n ≤ 3 if C has no breakpoints relative to S and S’,

• n ≤ 6 if C has one breakpoint relative to S and S’,

• n ≤ 9 if C has two breakpoints relative to S and S’.
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Can we have 10 or more leaves on a side? No!



Breakpoint Lemma. (K. and Linz, 2018).

Let S and S’ be two trees with no common pendant subtree of size at least 2 

and no common chain of length at least 4. Let N be a network that embeds S 

and S’, and let C be an n-chain of N, where n is the length of C. Then

• n ≤ 3 if C has no breakpoints,

• n ≤ 6 if C has one breakpoint,

• n ≤ 9 if C has two breakpoints.

Can we have 10 or more leaves on a side? No!

Why? Apply pigeonhole principle.

Both trees have (4,5,6,7) as a chain!



Lemma. (K. and Linz, 2018).

Let S and S’ be two trees on X’ with no common pendant subtree of size at 

least 2 and no common chain of length at least 4. If d
TBR

(S,S’)≥2, then

|X’| ≤ 15d
TBR

(S,S’)-9.



Lemma. (K, and Linz, 2018).

Let S and S’ be two trees on X’ with no common pendant subtree of size at 

least 2 and no common chain of length at least 4. If d
TBR

(S,S’)≥2, then

|X’| ≤ 15d
TBR

(S,S’)-9.

Proof sketch. There are 2k breakpoints, to distribute across 3(k-1) sides. 

Sides with 0, 1, 2 breakpoints can have at most 3, 6, 9 leaves respectively. 

The optimum of the counting equation is 15k-9.



Theorem. (Allen and Steel, 2001).

[Linear kernel] Let S and S’ be two trees obtained from T and T’ by 

repeated applications of the subtree and chain reduction until no further 

reduction is possible. Then

|X’| ≤ 28d
TBR

(T,T’),

where X’ is the leaf set of S and S’.

Improved kernel is |X’| ≤ 15d
TBR

(T,T’)-9.  (K. and Linz, 2018)

Is the new kernel tight?



Theorem. (Allen and Steel, 2001).

[Linear kernel] Let S and S’ be two trees obtained from T and T’ by 

repeated applications of the subtree and chain reduction until no further 

reduction is possible. Then

|X’| ≤ 28d
TBR

(T,T’),

where X’ is the leaf set of S and S’.

Improved kernel is |X’| ≤ 15d
TBR

(T,T’)-9.  (K. and Linz, 2018)

Is the new kernel tight?

YES.





For each k≥2 we 

can build two trees 

such that:

• The reduction 

rules can no 

longer be 

applied;

• The TBR distance 

is exactly k;

• The two trees 

have exactly 15k-

9 leaves.



Can we do better?



Can we reduce chains to length 2?

Allen and Steel, 2001



Can we reduce chains to length 2?

Allen and Steel, 2001



Can we reduce chains to length 2?

Allen and Steel, 2001

No! In some cases this causes d
TBR

to decrease.



Can we do better? Yes!

Idea. We describe 5 (!) new reduction rules which have been engineered 

to reduce the critical numbers in our counting argument:

• n ≤ 3 if C has no breakpoints,

• n ≤ 6→ 4   if C has one breakpoint,

• n ≤ 9→ 4 if C has two breakpoints.

By dividing 2k breakpoints across 3(k-1) sides, we conclude that the 

size of the new kernel is at most…

4*2k + 3*(k-3) = 11k-9.

The correctness of these new rules requires use of the agreement 

forest abstraction.





Agreement forest with 5 components



Fewer components are not possible: this is a maximum

agreement forest (MAF)



Allen and Steel 2001:

d
TBR

is equal to the number of components in a MAF, minus 1.



Chain preservation Theorem. (K. and Linz, 2019).

Let K be a set of disjoint common chains in T and T’ , such that each chain 

in K has length ≥ 3, or has length 2 and is “pendant” in at least one of T

and T’.

Then there exists a maximum agreement forest in which all the chains in K

are preserved.

In other words: no chain in K is split across two or more components of 

the forest.



a   b   c

a   b   c

d   e 

d    e 

T                                                     T’



a   b   c

a   b   c

d   e 

d    e 

Some maximum agreement forest has this structure.

T                                                     T’



Using preserved chains as “obstructions”

Idea. Use the fact that chains are preserved to impose structure on 

some maximum agreement forest, such that at least one of the 

following holds:

[Parameter reduction] Identify small subtrees whose deletion definitely 

reduces d
TBR

by 1.

[Aggressive chain reduction] Identify short chains which can be reduced 

to length 2 (or even 1), without causing a decrease in d
TBR

. 



Example of parameter reduction



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

What about x … ?



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

Can x be in the same component of the maximum agreement 

forest as {a,b}?



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

No! If {x,a,b} are together, this will cut through chain {c,d} in 

T’, contradicting the preservation theorem



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

No! If {x,a,b} are together, this will cut through chain {c,d} in 

T’, contradicting the preservation theorem

Shatters

{c,d}!!



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

A symmetrical argument proves that x cannot join with {c,d}



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

So x must be a singleton component of the maximum 

agreement forest



Example of parameter reduction

Common chain

{a,b}

Common chain 

{c,d}

So deleting x from the trees must reduce dTBR by exactly one.



Example of parameter reduction

Original                                                      Reduced



1
3 4

5

6

7

8

9

12
13 14 15

16

11

10

2

a

b
x

d

c

Idea. Assuming this reduction 

rule has been applied, you 

cannot have 5 taxa on a side 

of the network that has been 

divided by two breakpoints, as 

shown on the left.

(Many similar cases).



Finally: example of aggressive chain reduction

(which preserves dTBR)

Original                                                      Reduced



Putting it all together

In total we have introduced 5 new reduction rules which have been 

engineered to reduce the critical numbers in our counting argument:

• n ≤ 3 if C has no breakpoints,

• n ≤ 6→ 4   if C has one breakpoint,

• n ≤ 9→ 4 if C has two breakpoints.

By dividing 2k breakpoints across 3(k-1) sides, we conclude that the 

size of the new kernel is at most…

4*2k + 3*(k-3) = 11k-9.

Moreover, this bound is (again) tight. (K. and Linz, 2019).



Conclusions and future work

Our new kernel for d
TBR

has been achieved by simultaneously analysing 

the same problem from both a graph-construction and agreement 

forest perspective.

As far as we know, these are the first reduction rules to strictly enhance 

the reductive power of the classical subtree and chain reduction rules!

Can we go below 11k-9 ? Yes, we think so, but it will require new 

techniques (work in progress…) What is the limit?

Can we leverage these results to enhance FPT branching algorithms for 

computation of TBR distance?

In how far can we adapt the technique to work for other phylogenetic 

distances?



Thank you!

More details at:

• A tight kernel for computing the tree bisection and reconnection distance between 
two phylogenetic trees, https://arxiv.org/abs/1811.06892 (K. and Linz 2018)

• New reduction rules for the tree bisection and reconnection distance, 
https://arxiv.org/abs/1905.01468 (K. and Linz 2019)

https://arxiv.org/abs/1811.06892
https://arxiv.org/abs/1905.01468



