
ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 1

On the Complexity of the Single Individual SNP
Haplotyping Problem

Rudi Cilibrasi, Leo van Iersel, Steven Kelk and John Tromp

Abstract— We present several new results pertaining to
haplotyping. These results concern the combinatorial prob-
lem of reconstructing haplotypes from incomplete and/or
imperfectly sequenced haplotype fragments. We consider
the complexity of the problems Minimum Error Correction
(MEC) and Longest Haplotype Reconstruction (LHR) for
different restrictions on the input data. Specifically, we
look at the gapless case, where every row of the input
corresponds to a gapless haplotype-fragment, and the 1-
gap case, where at most one gap per fragment is allowed.
We prove that MEC is APX-hard in the 1-gap case and
still NP-hard in the gapless case. In addition, we question
earlier claims that MEC is NP-hard even when the input
matrix is restricted to being completely binary. Concerning
LHR, we show that this problem is NP-hard and APX-hard
in the 1-gap case (and thus also in the general case), but
is polynomial time solvable in the gapless case.

Index Terms— Combinatorial algorithms, Complexity
hierarchies, Complexity of approximation, Computational
biology, Genetics

I. INTRODUCTION

If we abstractly consider the human genome as
a string over the nucleotide alphabet {A,C, G, T},
it is widely known that the genomes of any two
humans have at more than 99% of the sites the
same nucleotide. The sites at which variability is
observed across the human population are called
Single Nucleotide Polymorphisms (SNPs), which
are formally defined as the sites on the human
genome where, across the human population,
two or more nucleotides are observed and each

First, third and fourth author work at the Centrum voor
Wiskunde en Informatica (CWI), Kruislaan 413, 1098 SJ Amster-
dam, Netherlands. Email: Rudi.Cilibrasi@cwi.nl, S.M.Kelk@cwi.nl,
John.Tromp@cwi.nl

Second author works at the Technische Universiteit Eind-
hoven, Den Dolech 2, 5612 AX Eindhoven, Netherlands. Email:
l.j.j.v.iersel@tue.nl, tel. +31402474220

Part of this research has been funded by the Dutch BSIK/BRICKS
project.

First author is supported in part by NWO project 612.55.002,
and by the IST Programme of the European Community, under the
PASCAL Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

such nucleotide occurs in at least 5% of the
population. These sites, which occur (on average)
approximately once per thousand bases, capture
the bulk of human genetic variability; the string of
nucleotides found at the SNP sites of a human - the
haplotype of that individual - can thus be thought
of as a “fingerprint” for that individual.

It has been observed that, for most SNP sites, only
two nucleotides are seen; sites where three or four
nucleotides are found are comparatively rare. Thus,
from a combinatorial perspective, a haplotype can
be abstractly expressed as a string over the alphabet
{0, 1}. Indeed, the biologically-motivated field of
SNP and haplotype analysis has spawned a rich
variety of combinatorial problems, which are well
described in surveys such as [1] and [2].

We focus on two such combinatorial problems,
both variants of the Single Individual Haplotyping
Problem (SIH), introduced in [3]. SIH amounts
to determining the haplotype of an individual
using (potentially) incomplete and/or imperfect
fragments of sequencing data. The situation is
further complicated by the fact that, being a
diploid organism, a human has two versions of
each chromosome; one each from the individual’s
mother and father. Hence, for a given interval
of the genome, a human has two haplotypes.
Thus, SIH can be more accurately described as
finding the two haplotypes of an individual given
fragments of sequencing data where the fragments
potentially have read errors and, crucially, where
it is not known which of the two chromosomes
each fragment was read from. We consider two
well-known variants of the problem: Minimum
Error Correction (MEC), and Longest Haplotype
Reconstruction (LHR).

The input to these problems is a matrix M
of haplotype fragments. Each column of M

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 2

represents a SNP site and thus each entry of the
matrix denotes the (binary) choice of nucleotide
seen at that SNP location on that fragment. An
entry of the matrix can thus either be ‘0’, ‘1’
or a hole, represented by ‘-’, which denotes lack
of knowledge or uncertainty about the nucleotide
at that site. We use M [i, j] to refer to the value
found at row i, column j of M , and use M [i]
to refer to the ith row. Two rows r1, r2 of the
matrix conflict if there exists a column j such that
M [r1, j] 6= M [r2, j] and M [r1, j],M [r2, j] ∈ {0, 1}.

A matrix is feasible iff the rows of the matrix
can be partitioned into two sets such that all rows
within each set are pairwise non-conflicting.

The objective in MEC is to “correct” (or “flip”)
as few entries of the input matrix as possible (i.e.
convert 0 to 1 or vice-versa) to arrive at a feasible
matrix. The motivation behind this is that all rows
of the input matrix were sequenced from one
haplotype or the other, and that any deviation from
that haplotype occurred because of read-errors
during sequencing.

The problem LHR has the same input as MEC
but a different objective. Recall that the rows of
a feasible matrix M can be partitioned into two
sets such that all rows within each set are pairwise
non-conflicting. Having obtained such a partition,
we can reconstruct a haplotype from each set by
merging all the rows in that set together. (We
define this formally later in Section III.) With
LHR the objective is to remove rows such that the
resulting matrix is feasible and such that the sum
of the lengths of the two resulting haplotypes is
maximised.

In the context of haplotyping, MEC and LHR
have been discussed - sometimes under different
names - in papers such as [1], [4], [5] and
(implicitly) [3]. One question arising from this
discussion is how the distribution of holes in the
input data affects computational complexity. To
explain, let us first define a gap (in a string over the
alphabet {0, 1,−}) as a maximal contiguous block
of holes that is flanked on both sides by non-hole
values. For example, the string ---0010---
has no gaps, -0--10-111 has two gaps, and
-0-----1-- has one gap. Two special cases of

MEC and LHR that are considered to be practically
relevant are the gapless case and the 1-gap case.
The gapless variant is where every row of the input
matrix is gapless, i.e. all holes appear at the start
or end. In the 1-gap case every row has at most
one gap.
In Section II-A we offer what we believe is the
first proof that Gapless-MEC (and hence 1-gap
MEC and also the general MEC) is NP-hard. We
do so by reduction from MAX-CUT. (As far as
we are aware, other claims of this result are based
explicitly or implicitly on results found in [6]; as
we discuss in Section II-C, we conclude that the
results in [6] cannot be used for this purpose.)

The NP-hardness of 1-gap MEC (and general
MEC) follows immediately from the proof
that Gapless-MEC is NP-hard. However, our
NP-hardness proof for Gapless-MEC is not
approximation-preserving, and consequently tells
us little about the (in)approximability of Gapless-
MEC, 1-gap MEC and general MEC. In light of
this we provide (in Section II-B) a proof that 1-gap
MEC is APX-hard, thus excluding (unless P=NP)
the existence of a Polynomial Time Approximation
Scheme (PTAS) for 1-gap MEC (and general MEC.)

We define (in Section II-C) the problem Binary-
MEC, where the input matrix contains no holes;
as far as we know the complexity of this problem
is still - intriguingly - open. In Section II-D
we prove an “auxiliary” lemma which, besides
being interesting in its own right, takes on a
new significance in light of the open complexity
of Binary-MEC. Subsequently, we consider a
parameterised version of binary-MEC, where the
number of haplotypes is not fixed as two, but is
part of the input. We prove that this problem is
NP-hard in Section II-E.

In Section III-A we show that Gapless-LHR
is polynomial-time solvable and give a dynamic
programming algorithm for this which runs in time
O(n2m + n3) for an n × m input matrix. This
improves upon the result of [3] which also showed
a polynomial-time algorithm for Gapless-LHR but
under the restricting assumption of non-nested
input rows.

We also prove, in Section III-B, that LHR is

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 3

APX-hard (and thus also NP-hard) in the general
case, by proving the much stronger result that
1-gap LHR is APX-hard. Although there is a claim
in [3], made very briefly, that LHR is NP-hard in
general, this is not substantiated. Therefore, our
result is the first proof of hardness for both 1-gap
LHR and general LHR.

II. MINIMUM ERROR CORRECTION (MEC)
For a length-m string X ∈ {0, 1,−}m, and a

length-m string Y ∈ {0, 1}m, we define d(X,Y) as
the number of mismatches between the strings i.e.
positions where X is 0 and Y is 1, or vice-versa;
holes do not contribute to the mismatch count.
Recall the definition of feasible from earlier; an
alternative, and equivalent, definition (which we
use in the following proofs) is as follows. An
n×m SNP matrix M is feasible iff there exist two
strings (haplotypes) H1, H2 ∈ {0, 1}m, such that
for all rows r of M, d(r,H1) = 0 or d(r,H2) = 0.

Finally, a flip is where a 0 entry is converted
to a 1, or vice-versa. Flipping to or from holes is
not allowed and the haplotypes H1 and H2 may
not contain holes.

A. Gapless-MEC
Problem: Gapless-MEC
Input: A gapless SNP matrix M .
Output: The smallest number of flips needed to
make M feasible.

Lemma 1: Gapless-MEC is NP-hard.

Proof: We give a reduction from MAX-CUT,
which is the problem of computing the size of a
maximum cardinality cut in a graph. Let G = (V, E)
be the input to MAX-CUT, where E is undirected.
(We identify, without loss of generality, V with
{1, 2, ..., |V |}.) We construct an input matrix M
for Gapless-MEC with 2k|V | + |E| rows and 2|V |
columns where k = 2|E||V |. We use M0 to refer to
the first k|V | rows of M , M1 to refer to the second
k|V | rows of M , and MG to refer to the remaining
|E| rows. M0 consists of |V | consecutive blocks of
k identical rows. Each row in the i-th block (for
1 ≤ i ≤ |V |) contains a 0 at columns 2i− 1 and 2i
and holes at all other columns. M1 is defined similar
to M0 with 1-entries instead of 0-entries. Each row

Fig. II.1. Example input to MAX-CUT (see Lemma 1)

0 0 − − − − − −
− − 0 0 − − − −
− − − − 0 0 − −
− − − − − − 0 0
1 1 − − − − − −
− − 1 1 − − − −
− − − − 1 1 − −
− − − − − − 1 1
0 0 1 1 0 1 0 1
0 0 0 1 1 1 0 1
0 0 0 1 0 1 1 1
0 1 0 1 0 0 1 1

32 copies

MG

Fig. II.2. Construction of matrix M (from Lemma 1) for graph in
Figure II.1

of MG encodes an edge from E: for edge {i, j}
(with i < j) we specify that columns 2i − 1 and
2i contain 0s, columns 2j − 1 and 2j contain 1s,
and for all h 6= i, j, column 2h− 1 contains 0 and
column 2h contains 1. (See Figures II.1 and II.2 for
an example of how M is constructed.)

Suppose t is the largest cut possible in G and s is
the minimum number of flips needed to make M
feasible. We claim that the following holds:

s = |E|(|V | − 2) + 2(|E| − t). (II.1)

From this t, the optimal solution of MAX-CUT, can
easily be computed. First, note that the solution to
Gapless-MEC is trivially upperbounded by |V ||E|.
This follows because we could simply flip every
1 entry in MG to 0; the resulting overall matrix
would be feasible because we could just take H1 as
the all-0 string and H2 as the all-1 string. Now, we
say a haplotype H has the double-entry property if,
for all odd-indexed positions (i.e. columns) j in H ,
the entry at position j of H is the same as the entry
at position j + 1. We argue that a minimal number
of feasibility-inducing flips will always lead to two
haplotypes H1, H2 such that both haplotypes have
the double-entry property and, further, H1 is the

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 4

bitwise complement of H2. (We describe such a
pair of haplotypes as partition-encoding.) This is
because, if H1, H2 are not partition-encoding, then
at least k > |V ||E| (in contrast with zero) entries
in M0 and/or M1 will have to be flipped, meaning
this strategy is doomed to begin with.

Now, for a given partition-encoding pair of
haplotypes, it follows that - for each row in MG -
we will have to flip either |V | − 2 or |V | entries
to reach its nearest haplotype. This is because,
irrespective of which haplotype we move a row
to, the |V | − 2 pairs of columns not encoding
end-points (for a given row) will always cost 1 flip
each to fix. Then either 2 or 0 of the 4 “endpoint-
encoding” entries will also need to be flipped;
4 flips will never be necessary because then the
row could move to the other haplotype, requiring
no extra flips. Gapless-MEC thus maximises the
number of rows which require |V | − 2 rather than
|V | flips. If we think of H1 and H2 as encoding a
partition of the vertices of V (i.e. a vertex i is on
one side of the partition if H1 has 1s in columns
2i− 1 and 2i, and on the other side if H2 has 1s in
those columns), it follows that each row requiring
|V |−2 flips corresponds to a cut-edge in the vertex
partition defined by H1 and H2. The expression
(II.1) follows.

B. 1-Gap MEC

Problem: 1-gap MEC
Input: SNP matrix M with at most 1 gap per row.
Output: The smallest number of flips needed to
make M feasible.

To prove that 1-gap MEC is APX-hard we
will describe an L-reduction. This is a specific
type of approximation-preserving reduction, first
introduced in [7]. If there exists an L-reduction
from a problem X to a problem Y, then a PTAS for
Y can be used to build a PTAS for X. Conversely,
if there exists an L-reduction from X to Y, and X
is APX-hard, so is Y. See (for example) [8] for a
succinct discussion of this. We will reduce from
CUBIC-MIN-UNCUT, which is the problem of
finding the minimum number of edges that have
to be removed from a 3-regular graph in order to
make it bipartite. Our first goal is thus to prove

the APX-hardness of CUBIC-MIN-UNCUT, which
itself will be proven using an L-reduction from the
APX-hard problem CUBIC-MAX-CUT.

To aid the reader, we reproduce here the definition
of an L-reduction.

Definition 1: (Papadimitriou and Yannakakis [7])
Let A and B be two optimisation problems. An L-
reduction from A to B is a pair of functions R and S,
both computable in polynomial time, such that for
any instance I of A with optimum cost Opt(I), R(I)
is an instance of B with optimum cost Opt(R(I))
and for every feasible solution s of R(I), S(s) is a
feasible solution of I such that:

Opt(R(I)) ≤ αOpt(I), (II.2)

for some positive constant α and:

|Opt(I)− c(S(s))| ≤ β|Opt(R(I))− c(s)|, (II.3)

for some positive constant β, where c(S(s)) and
c(s) represent the costs of S(s) and s, respectively.

Observation 1: CUBIC-MIN-UNCUT is APX-
hard.

Proof: We give an L-reduction from CUBIC-
MAX-CUT, the problem of finding the maximum
cardinality of a cut in a 3-regular graph. (This
problem is shown to be APX-hard in [9]; see also
[10].) Let G = (V,E) be the input to CUBIC-
MAX-CUT.

Note that CUBIC-MIN-UNCUT is the
“complement” of CUBIC-MAX-CUT, as expressed
by the following relationship:

CUBIC-MAX-CUT(G)
= |E| − CUBIC-MIN-UNCUT(G). (II.4)

Here, and throughout this paper, we use P (I) to
denote the optimal value of problem P on input I .

To see why (II.4) holds, note that for every
cut C, the removal of the edges in E \ C will lead
to a bipartite graph. On the other hand, given a
set of edges E ′ whose removal makes G bipartite,
the complement is not necessarily a cut. However,
given a bipartition induced by the removal of E ′,
the edges from the original graph that cross this
bipartition form a cut C ′, such that |C ′| ≥ |E \E ′|.

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 5

This proves (II.4), and the mapping (just described)
from E ′ to C ′ is the mapping we use in the
L-reduction.

Now, note that property (II.2) of the L-reduction is
easily satisfied (taking α = 1) because the optimal
value of CUBIC-MIN-UNCUT is always less than
or equal to the optimal value of CUBIC-MAX-
CUT. This follows from the combination of (II.4)
with the fact that a maximum cut in a 3-regular
graph always contains at least 2/3 of the edges: if
a vertex has less than two incident edges in the cut
then we can get a larger cut by moving this vertex
to the other side of the partition.

To see that property (II.3) of the L-reduction
is easily satisfied (taking β = 1), let E ′ be any
set of edges whose removal makes G bipartite.
Property (II.3) is satisfied because E ′ gets mapped
to a cut C ′, as defined above, and combined with
(II.4) this gives:

CUBIC-MAX-CUT(G)− |C ′|
≤ CUBIC-MAX-CUT(G)− |E \ E ′|
= |E ′| − CUBIC-MIN-UNCUT(G).

(II.5)

This completes the L-reduction from CUBIC-MAX-
CUT to CUBIC-MIN-UNCUT, proving the APX-
hardness of CUBIC-MIN-UNCUT.

We also need the following observation.

Observation 2: Let G = (V, E) be an undirected,
3-regular graph. Then we can find, in polynomial
time, an orientation of the edges of G so that
each vertex has either in-degree 2 and out-degree
1 (“in-in-out”) or out-degree 2 and in-degree 1
(“out-out-in”).

Proof: (We assume that G is connected; if G is
not connected, we can apply the following argument
to each component of G in turn, and the overall
result still holds.) Every cubic graph has an even
number of vertices, because every graph must have
an even number of odd-degree vertices. We add an
arbitrary perfect matching to the graph, which may
create multiple edges. The graph is now 4-regular
and therefore has an Euler tour. We direct the edges
following the Euler-tour; every vertex is now in-in-
out-out. If we remove the perfect matching edges
we added, we are left with an oriented version of G

where every vertex is in-in-out or out-out-in. This
can all be done in polynomial time.

Lemma 2: 1-gap MEC is APX-hard.

Proof: We give a reduction from CUBIC-
MIN-UNCUT. Consider an arbitrary 3-regular
graph G = (V, E) and orient the edges as described
in Observation 2 to obtain an oriented version
of G,

−→
G = (V,

−→
E), where each vertex is either

in-in-out or out-out-in. We construct an |E| × |V |
input matrix M for 1-gap MEC as follows. The
columns of M correspond to the vertices of

−→
G and

every row of M encodes an oriented edge of
−→
G ;

it has a 0 in the column corresponding to the tail
of the edge (i.e. the vertex from which the edge
leaves), a 1 in the column corresponding to the
head of the edge and it has holes in the remaining
columns.

We prove the following:

CUBIC-MIN-UNCUT(G) = 1-gap MEC(M).
(II.6)

We first prove that:

1-gap MEC(M) ≤ CUBIC-MIN-UNCUT(G).
(II.7)

To see this, let E ′ be a minimal set of edges whose
removal makes G bipartite, and let |E ′| = k. Let
B = (L ∪ R, E \ E ′) be the bipartite graph (with
bipartition L ∪ R) obtained from G by removing
the edges E ′. Let H1 (respectively, H2) be the
haplotype that has 1s in the columns representing
vertices of L (respectively, R) and 0s elsewhere.
It is possible to make M feasible with k flips, by
the following process: for each edge in E ′, flip
the 0 bit in the corresponding row of M to 1. For
each row r of M it is now true that d(r,H1) = 0 or
d(r,H2) = 0, proving the feasibility of M .

The proof that

CUBIC-MIN-UNCUT(G) ≤ 1-gap MEC(M) (II.8)

is more subtle. Suppose we can render M feasible
using j flips, and let H1 and H2 be any two
haplotypes such that, after the j flips, each row
of M is distance 0 from either H1 or H2. If H1

and H2 are bitwise complementary then we can
make G bipartite by removing an edge whenever

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 6

we had to flip a bit in the corresponding row. The
idea is, namely, that the 1s in H1 (respectively, H2)
represent the vertices L (respectively, R) in the
resulting bipartition L ∪R.

However, suppose the two haplotypes H1 and
H2 are not bitwise complementary. In this case it
is sufficient to demonstrate that there also exists
bitwise complementary haplotypes H ′

1 and H ′
2 such

that, after j (or fewer) flips, every row of M is
distance 0 from either H ′

1 or H ′
2. Consider thus a

column of H1 and H2 where the two haplotypes
are not complementary. Crucially, the orientation
of
−→
G ensures that every column of M contains

either one 1 and two 0s or two 1s and one 0
(and the rest holes). A simple case analysis shows
that, because of this, we can always change the
value of one of the haplotypes in that column,
without increasing the number of flips. (The
number of flips might decrease.) Repeating this
process for all columns of H1 and H2 where the
same value is observed thus creates complementary
haplotypes H ′

1 and H ′
2, and - as described in

the previous paragraph - these haplotypes then
determine which edges of G should be removed to
make G bipartite. This completes the proof of (II.6).

The above reduction can be computed in polynomial
time and is an L-reduction. From (II.6) it follows
directly that property (II.2) of an L-reduction is
satisfied with α = 1. Property (II.3), with β = 1,
follows from the proof of (II.8), combined with
(II.6). Namely, whenever we use (say) t flips to
make M feasible, we can find s ≤ t edges of G
that can be removed to make G bipartite. Combined
with (II.6) this gives:

|CUBIC-MIN-UNCUT(G)− s|
≤ |1-gap MEC(M)− t|. (II.9)

C. Binary-MEC

From a mathematical point of view it is
interesting to determine whether MEC stays NP-
hard when the input matrix is further restricted. Let
us therefore define the following problem.

Problem: Binary-MEC
Input: A SNP matrix M that does not contain any

holes.
Output: The smallest number of flips needed to
make M feasible.

Like all optimisation problems, the problem
Binary-MEC has different variants. The above
definition is technically speaking the evaluation
variant of the Binary-MEC problem. See [11]
for a more detailed explanation of terminology in
this area. We now consider the constructive version:

Problem: Binary-Constructive-MEC
Input: A SNP matrix M of size n × m that does
not contain any holes
Output: Two haplotypes H1, H2 ∈ {0, 1}m

minimizing:

DM(H1, H2) =
∑

rows r of M

min(d(r,H1), d(r,H2)).

(II.10)
In the next subsection, we prove that Binary-
Constructive-MEC is polynomial-time Turing
interreducible with its evaluation counterpart,
Binary-MEC. This proves that Binary-Constructive-
MEC is solvable in polynomial-time if and only
if Binary-MEC is solvable in polynomial-time.
We mention this correspondence because, when
expressed as a constructive problem, it can be
seen that MEC is in fact a specific type of
clustering problem, a topic of intensive study in
the literature. More specifically, we are trying to
find two representative “median” (or “consensus”)
strings such that the sum, over all input strings,
of the distance between each input string and its
nearest median, is minimised. This interreducibility
is potentially useful because we now argue, in
contrast to claims in the existing literature, that the
complexity of Binary-MEC / Binary-Constructive-
MEC is actually still open.

To elaborate, it is claimed in several papers
(e.g. [12]) that a problem equivalent to Binary-
Constructive-MEC is NP-hard. Such claims
inevitably refer to the seminal paper Segmentation
Problems by Kleinberg, Papadimitriou, and
Raghavan (KPR), which has appeared in multiple
different forms since 1998 (e.g. [6], [13] and
[14]). However, the KPR papers actually discuss
two superficially similar, but essentially different,
problems: one problem is essentially equivalent to

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 7

Binary-Constructive-MEC, and the other is a more
general (and thus, potentially, a more difficult)
problem. This more general problem allows the
entries of the input matrix to be drawn arbitrarily
from R, which makes it much easier to prove
NP-hardness. Communication with the authors [15]
has confirmed that they have no proof of hardness
for the former problem, i.e. the problem that is
essentially equivalent to Binary-Constructive-MEC.

Thus we conclude that the complexity of Binary-
Constructive-MEC / Binary-MEC is still open.
From an approximation viewpoint the problem
has been quite well-studied; the problem has a
Polynomial Time Approximation Scheme (PTAS)
because it is a special form of the Hamming 2-
Median Clustering Problem. A randomized PTAS
was demonstrated in [16] and later a deterministic
PTAS in [17]. Other approximation results appear
in [6], [12], [14] and a heuristic for a similar
problem appears in [4]. We also know that, if the
number of haplotypes to be found is specified as
part of the input (and not fixed as 2), the problem
becomes NP-hard; we prove this in the following
section. Finally, it may also be relevant that the
“geometric” version of the problem (where rows
of the input matrix are not drawn from {0, 1}m

but from Rm, and Euclidean distance is used
instead of Hamming distance) is also open from a
complexity viewpoint [16]. (However, the version
using Euclidean-distance-squared is known to be
NP-hard [18].)

D. Interreducibility of MEC and Constructive-MEC
The following lemma proves that MEC is

solvable in polynomial time if and only if
Constructive-MEC is solvable in polynomial time.
The same holds for Binary-MEC and Binary-
Constructive-MEC.

Lemma 3: MEC and Constructive-MEC are
polynomial-time Turing interreducible. (Also:
Binary-MEC and Binary-Constructive-MEC are
polynomial-time Turing interreducible.)

Proof: We show interreducibility of MEC
and Constructive-MEC in such a way that the
interreducibility of Binary-MEC with Binary-
Constructive-MEC also follows immediately from

the reduction. This makes the reduction from
Constructive-MEC to MEC quite complicated
because we must thus avoid the use of holes.

1. Reducing MEC to Constructive-MEC is trivial
because, given an optimal haplotype pair (H1, H2),
DM(H1, H2) can easily be computed in polynomial-
time by summing min(d(H1, r), d(H2, r)) over all
rows r of the input matrix M .

2. Reducing Constructive-MEC to MEC is
more involved. To prevent a particular special case
which could complicate our reduction, we first
check whether every row of M (i.e. the input to
Constructive-MEC) is identical. If this is so, we
can complete the reduction by simply returning
(H1, H1) where H1 is the first row of M . Hence,
from this point onwards, we assume that M has at
least two distinct rows.

Let OptPairs(M) be the set of all unordered
optimal haplotype pairs for M i.e. the set of all
(H1, H2) such that DM(H1, H2) = MEC(M).
Given that all rows in M are not identical,
we observe that there are no pairs of the form
(H1, H1) in OptPairs(M). This is because
DM(H1, H1) is always larger than DM(H1, r)
for any row r in M that is not equal to H1.
Let OptPairs(M,H ′) ⊆ OptPairs(M) be those
elements (H1, H2) ∈ OptPairs(M) such that
H1 = H ′ or H2 = H ′. Let g(r,H1, H2) be defined
as min(d(r,H1), d(r,H2)).

Consider the following two subroutines:

Subroutine: DFN (“Distance From Nearest
Optimal Haplotype Pair”)
Input: An n × m SNP matrix M and a vector
r ∈ {0, 1}m.
Output: The value ddfn which we define as
follows:

ddfn = min
(H1,H2)∈OptPairs(M)

g(r,H1, H2).

Subroutine: ANCHORED-DFN (“Anchored Dis-
tance From Nearest Optimal Haplotype Pair”)
Input: An n × m SNP matrix M , a vector r ∈
{0, 1}m, and a haplotype H ′ such that (H ′, H2) ∈
OptPairs(M) for some H2.

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 8

Output: The value dadfn, defined as:

dadfn = min
(H1,H2)∈OptPairs(M,H′)

g(r,H1, H2).

We assume the existence of implementations
of DFN and ANCHORED-DFN which run
in polynomial-time whenever MEC runs in
polynomial-time. We use these two subroutines
to reduce Constructive-MEC to MEC and then,
to complete the proof, demonstrate and prove
correcteness of implementations for DFN and
ANCHORED-DFN.

The general idea of the reduction from
Constructive-MEC to MEC is to find some
pair (H1, H2) ∈ OptPairs(M) by first finding H1

(using repeated calls to DFN) and then finding
H2 (by using repeated calls to ANCHORED-
DFN with H1 specified as the “anchoring”
haplotype.) Throughout the reduction, the following
two observations are important. Both follow
immediately from the definition of D - i.e. (II.10).

Observation 3: Let M1 ∪ M2 be a partition
of rows of the matrix M into two sets.
Then, for all H1 and H2, DM(H1, H2) =
DM1(H1, H2) + DM2(H1, H2).

Observation 4: Suppose a SNP matrix M1

can be obtained from a SNP matrix M2 by
removing 0 or more rows from M2. Then
MEC(M1) ≤ MEC(M2).

To begin the reduction, note that, for an arbitrary
haplotype X , DFN(M,X) = 0 if and only if
(X, H2) ∈ OptPairs(M) for some haplotype H2.
Our idea is thus that we initialise X to be all-0 and
flip one entry of X at a time (i.e. change a 0 to a 1
or vice-versa) until DFN(M, X) = 0; at that point
X = H1 (for some (H1, H2) ∈ OptPairs(M).)
Note that it is not possible that DFN(M,X) = m,
because all (H1, H2) ∈ OptPairs(M) are of the
form H1 6= H2, and if H1 6= H2 we know that
g(X,H1, H2) < m. Suppose DFN(M, X) = d
where 0 < d < m. If we define flip(X, i) as the
haplotype obtained by flipping the entry in the ith
column of X , then we know that there exists i
(1 ≤ i ≤ m) such that DFN(M, flip(X, i)) < d.
Such a position must exist because we can flip
some entry in X to bring it closer to the haplotype

(which we know exists) that it was distance d
from. It is clear that we can find a position i in
polynomial-time by calling DFN(M, flip(X, j))
for 1 ≤ j ≤ m until it is found. Having found such
an i, we set X = flip(X, i).

Clearly this process can be iterated, finding
one entry to flip in every iteration, until
DFN(M,X) = 0 and at this point setting
H1 = X gives us the desired result. Given that
DFN(M,X) decreases by at least 1 every iteration,
at most m− 1 iterations are required.

Thus, having found H1, we need to find some H2

such that (H1, H2) is in OptPairs(M).

First, we initialise X to be the complement
of H1 (i.e. the row obtained by flipping every
entry of H1). Now, observe that if X 6= H1

and ANCHORED-DFN(M, X, H1) = 0 then
(H1, X) ∈ OptPairs(M) and we are finished.
The tactic is thus to find, at each iteration,
some position i of X such that ANCHORED-
DFN(M, flip(X, i), H1) is less than ANCHORED-
DFN(M,X,H1), and then setting X to be
flip(X, i). As before we repeat this process until
our call to ANCHORED-DFN returns zero. The
“trick” in this case is to prevent X converging on
H1, because (knowing that M has at least two
different types of row) (H1, H1) 6∈ OptPairs(M).
The initialisation of X to the complement of H1

guarantees this. To see why this is, observe that, if
X is the complement of H1, d(X,H1) = m. Thus,
we would need at least m flips to transform X into
H1. However, if X is the complement of H1, then
- because we have guaranteed that OptPairs(M)
contains no pairs of the form (H1, H1) - we
know that ANCHORED-DFN(M, X, H1) < m.
Given that we can guarantee that ANCHORED-
DFN(M,X,H1) can be reduced by at least 1 at
every iteration, it is clear that we can find an X
such that ANCHORED-DFN(M, X, H1) = 0 after
making no more than m − 1 iterations, which
ensures that X cannot have been transformed into
H1. Once we have such an X we can set H2 = X
and return (H1, H2).

To complete the proof of Lemma 3 it remains
only to demonstrate and prove the correctness
of algorithms for DFN and ANCHORED-DFN,

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 9

which we do below. Note that both DFN and
ANCHORED-DFN run in polynomial-time if MEC
runs in polynomial-time.

Subroutine: DFN (“Distance From Nearest
Optimal Haplotype Pair”)
Input: An n × m SNP matrix M and a vector
r ∈ {0, 1}m.
Output: The value ddfn which we define as
follows:

ddfn = min
(H1,H2)∈OptPairs(M)

g(r,H1, H2).

The following is a three-step algorithm to compute
DFN(M,r) which uses an oracle for MEC.

1. Compute d =MEC(M).
2. Let M ′ be the n(m + 1) × m matrix obtained
from M by making m + 1 copies of every row of
M .
3. Return MEC(M ′ ∪ {r}) − (m + 1)d where
M ′ ∪ {r} is the matrix obtained by adding the
single row r to the matrix M ′.

To prove the correctness of the above we first
make a further observation, which (as with the two
previous observations) follows directly from (II.10).

Observation 5: Suppose an kn×m SNP matrix
M1 is obtained from an n × m SNP matrix
M2 by making k ≥ 1 copies of every row of
M2. Then MEC(M1) = k.MEC(M2), and
OptPairs(M1) = OptPairs(M2).

By the above observation we know that
MEC(M ′) = (m + 1)d and OptPairs(M ′) =
OptPairs(M). Now, we argue that
OptPairs(M ′ ∪ {r}) ⊆ OptPairs(M). To
see why this is, suppose there existed (H3, H4)
such that (H3, H4) ∈ OptPairs(M ′ ∪ {r}) but
(H3, H4) 6∈ OptPairs(M). This would mean
DM(H3, H4) > d where d =MEC(M). Now:

DM ′∪{r}(H3, H4) ≥ DM ′(H3, H4)

= (m + 1)DM(H3, H4)

≥ (m + 1)(d + 1).

However, if we take any (H1, H2) ∈ OptPairs(M),
we see that:

DM ′∪{r}(H1, H2) ≤ (m + 1)d + g(r,H1, H2)

≤ (m + 1)d + m.

Now, (m + 1)d + m < (m + 1)(d + 1) so (H3, H4)
could not possibly be in OptPairs(M ′ ∪ {r})
- contradiction! The relationship OptPairs(M ′ ∪
{r}) ⊆ OptPairs(M) thus follows. It further
follows, from Observation 3, that the members
of OptPairs(M ′ ∪ {r}) are precisely those pairs
(H1, H2) ∈ OptPairs(M) that minimise the
expression g(r,H1, H2). The minimal value of
g(r,H1, H2) has already been defined as ddfn, so
we have:

MEC(M ′ ∪ {r}) = (m + 1)d + ddfn.

This proves the correctness of Step 3 of the
subroutine.

Subroutine: ANCHORED-DFN (“Anchored
Distance From Nearest Optimal Haplotype Pair”)
Input: An n × m SNP matrix M , a vector
r ∈ {0, 1}m, and a haplotype H ′ such that
(H ′, H2) ∈ OptPairs(M) for some H2.
Output: The value dadfn, defined as:

dadfn = min
(H1,H2)∈OptPairs(M,H′)

g(r,H1, H2).

Given that H ′ is one half of some optimal haplotype
pair for M , it can be shown that ANCHORED-
DFN(M, r,H ′) = DFN(M ∪ {H ′}, r), thus demon-
strating how ANCHORED-DFN can be easily
reduced to DFN in polynomial-time. To prove
the equation it is sufficient to demonstrate that
OptPairs(M ∪ {H ′}) = OptPairs(M, H ′), which
we do now. Let d =MEC(M). It follows that
MEC(M∪{H ′}) ≥ d. In fact, MEC(M∪{H ′}) = d
because DM∪{H′}(H ′, H2) = d for all (H ′, H2) ∈
OptPairs(M,H ′). Hence OptPairs(M, H ′) ⊆
OptPairs(M ∪ {H ′}). To prove the other direc-
tion, suppose there existed some pair (H1, H2) ∈
OptPairs(M ∪ {H ′}) such that H1 6= H ′ and
H2 6= H ′. But then, from Observation 3, we would
have:

DM∪{H′}(H1, H2) = DM(H1, H2) + g(H ′, H1, H2)

≥ DM(H1, H2) + 1

> d.

Thus, (H1, H2) could not have been
in OptPairs(M ∪ {H ′}) in the first
place, giving us a contradiction. Thus
OptPairs(M ∪ {H ′}) ⊆ OptPairs(M, H ′) and
hence OptPairs(M ∪ {H ′}) = OptPairs(M,H ′),
proving the correctness of subroutine ANCHORED-
DFN.

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 10

E. Parameterised Binary-MEC

Let us now consider a generalisation of the
problem Binary-MEC, where the number of
haplotypes is not fixed as two, but part of the input.

Problem: Parameterised-Binary-MEC (PBMEC)
Input: A SNP matrix M that contains no holes,
and k ∈ N \ {0}.
Output: The smallest number of flips needed to
make M feasible under k haplotypes.

The notion of feasible generalises easily to
k ≥ 1 haplotypes: a SNP matrix M is feasible
under k haplotypes if M can be partitioned into k
segments such that all the rows within each segment
are pairwise non-conflicting. The definition of DM

also generalises easily to k haplotypes; we define
DM,k(H1, H2, ..., Hk) as:

∑
rows r of M

min(d(r,H1), d(r,H2), ..., d(r,Hk)).

(II.11)
We define OptTuples(M, k) as the set of unordered
optimal k-tuples of haplotypes for M i.e. those
k-tuples of haplotypes which have a DM,k score
equal to PBMEC(M, k).

Lemma 4: PBMEC is NP-hard.

Proof: We reduce from the NP-hard problem
MINIMUM-VERTEX-COVER. Let G = (V, E)
be an undirected graph. A subset V ′ ⊆ V is
said to cover an edge (u, v) ∈ E if u ∈ V ′ or
v ∈ V ′. A vertex cover of an undirected graph
G = (V, E) is a subset U of the vertices such that
every edge in E is covered by U . Given a graph
G, MINIMUM-VERTEX-COVER is the problem
of computing the size of a minimum cardinality
vertex cover U of G.

Let G = (V,E) be the input to MINIMUM-
VERTEX-COVER. We construct a SNP matrix M
as follows. M has |V | columns and 3|E||V | + |E|
rows. We name the first 3|E||V | rows M0 and
the remaining |E| rows MG. M0 is the matrix
obtained by taking the |V | × |V | identity matrix
(i.e. 1s on the diagonal, 0s everywhere else) and
making 3|E| copies of each row. Each row in MG

encodes an edge of G: the row has 1-entries at the
endpoints of the edge, and the rest of the row is 0.

We argue shortly that, to compute the size of the
smallest vertex cover in G, we call PBMEC(M, k)
for increasing values of k (starting with k = 2)
until we first encounter a k such that:

PBMEC(M, k) = 3|E|(|V | − (k − 1)) + |E|.
(II.12)

Once the smallest such k has been found, we can
output that the size of the smallest vertex cover in
G is k−1. Actually, if we haven’t yet found a value
k < |V | − 2 satisfying the above equation, we can
check by brute force in polynomial-time whether
G has a vertex cover of size |V | − 3, |V | − 2,
|V | − 1, or |V |. The reason for wanting to ensure
that PBMEC(M, k) is not called with k ≥ |V | − 2
is explained later in the analysis. Note that, should
we wish to build a Karp reduction from the
decision version of MINIMUM-VERTEX-COVER
to the decision version of PBMEC, it is not a
problem to make this brute force checking fit into
the framework of a Karp reduction. The Karp
reduction can do the brute force checking itself
and use trivial inputs to the decision version of
PBMEC to communicate its “yes” or “no” answer.

It remains only to prove that (for k < |V | − 2)
(II.12) holds iff G has a vertex cover of size k− 1.

To prove this we need to first analyze
OptTuples(M0, k). Recall that M0 was obtained
by duplicating the rows of the |V | × |V | identity
matrix. Let I|V | be shorthand for the |V | × |V |
identity matrix. Given that M0 is simply a “scaled
up” version of I|V |, it follows that:

OptTuples(M0, k) = OptTuples(I|V |, k). (II.13)

Now, we argue that all the k-tuples in
OptTuples(I|V |, k) (for k < |V | − 2) have
the following form: one haplotype from the tuple
contains only 0s, and the remaining k−1 haplotypes
from the tuple each have precisely one entry set to
1. Let us name such a k-tuple a candidate tuple.

First, note that PBMEC(I|V |, k) ≤ |V | − (k − 1),
because |V |− (k−1) is the value of the D measure
- defined in (II.11) - under any candidate tuple.
Secondly, under an arbitrary k-tuple there can
be at most k rows of I|V | which contribute 0 to
the D measure. However, if precisely k rows of
I|V | contribute 0 to the D measure (i.e., every

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 11

Fig. II.3. Example input graph to MINIMUM-VERTEX-COVER
(see Lemma 4)

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 0 1 1

12 copies

MG

Fig. II.4. Construction of matrix M for graph from Figure II.3

haplotype has precisely one entry set to 1, and the
haplotypes are all distinct) then there are |V | − k
rows which each contribute 2 to the D measure;
such a k-tuple cannot be optimal because it has
a D measure of 2(|V | − k) > |V | − (k − 1). So
we reason that at most k − 1 rows contribute 0
to the D measure. In fact, precisely k − 1 rows
must contribute 0 to the D measure because,
otherwise, there would be at least |V | − (k − 2)
rows contributing at least 1, and this is not possible
because PBMEC(I|V |, k) ≤ |V | − (k − 1). So
k − 1 of the haplotypes correspond to rows of I|V |,
and the remaining |V | − (k − 1) rows of I|V | must
each contribute 1 to the D measure. But the only
way to do this (given that |V | − (k − 1) > 2) is to
make the kth haplotype the haplotype where every
entry is 0. Hence:

PBMEC(I|V |, k) = |V | − (k − 1) (II.14)

and:

PBMEC(M0, k) = 3|E|(|V | − (k − 1)). (II.15)

OptTuples(I|V |, k) (= OptTuples(M0, k)) is, by
extension, precisely the set of candidate k-tuples.

The next step is to observe that OptTuples(M, k) ⊆
OptTuples(M0, k). To see this, suppose (by way
of contradiction) that it is not true, and there exists
a k-tuple H∗ ∈ OptTuples(M, k) that is not in

OptTuples(M0, k). But then replacing H∗ by any
k-tuple out of OptTuples(M0, k) would reduce
the number of flips needed in M0 by at least
3|E|, in contrast to an increase in the number of
flips needed in MG of at most 2|E|, thus leading
to an overall reduction in the number of flips;
contradiction! (The 2|E| figure is the number of
flips required to make all rows in MG equal to the
all-0 haplotype.)

Because OptTuples(M, k) ⊆ OptTuples(M0, k),
we can restrict our attention to the k-tuples in
OptTuples(M0, k). Observe that there is a natural
1-1 correspondence between the elements of
OptTuples(M0, k) and all size k− 1 subsets of V :
a vertex v ∈ V is in the subset corresponding to
H∗ ∈ OptTuples(M0, k) iff one of the haplotypes
in H∗ has a 1 in the column corresponding to
vertex v.

Now, for a k-tuple H∗ ∈ OptTuples(M0, k)
we let Cov(G,H∗) be the set of edges in G which
are covered by the subset of V corresponding to
H∗. (Thus, |Cov(G, H∗)| = |E| iff H∗ represents
a vertex cover of G.) It is easy to check that, for
H∗ ∈ OptTuples(M0, k):

DM,k(H
∗) = 3|E|(|V | − (k − 1))

+ |Cov(G,H∗)|
+ 2(|E| − |Cov(G,H∗|)

= 3|E|(|V | − (k − 1))
+ 2|E| − |Cov(G,H∗)|.

Hence, for H∗ ∈ OptTuples(M0, k), DM,k(H
∗)

equals 3|E|(|V | − (k − 1)) + |E| iff H∗ represents
a size k − 1 vertex cover of G.

III. LONGEST HAPLOTYPE RECONSTRUCTION
(LHR)

Suppose a SNP matrix M is feasible. Then we
can partition the rows of M into two sets, Ml

and Mr, such that the rows within each set are
pairwise non-conflicting. (The partition might not
be unique.) From Mi (i ∈ {l, r}) we can then build
a haplotype Hi by combining the rows of Mi as
follows: The jth column of Hi is set to 1 if at least
one row from Mi has a 1 in column j, is set to 0
if at least one row from Mi has a 0 in column j,
and is set to a hole if all rows in Mi have a hole in

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 12

column j. Note that, in contrast to MEC, this leads
to haplotypes that potentially contain holes. For
example, suppose one side of the partition contains
rows 10--, -0-- and ---1; then the haplotype
we get from this is 10-1. We define the length
of a haplotype H , denoted as |H|, as the number
of positions where it does not contain a hole; the
haplotype 10-1 thus has length 3, for example.
Now, the objective with LHR is to remove rows
from M to make it feasible but also such that the
sum of the lengths of the two resulting haplotypes
is maximised. We define the function LHR(M)
(which gives a natural number as output) as the
largest value this sum-of-lengths value can take,
ranging over all feasibility-inducing row-removals
and subsequent partitions.

In Section III-A we provide a polynomial-
time dynamic programming algorithm for the
gapless variant of LHR, Gapless-LHR. In Section
III-B we show that LHR becomes APX-hard and
NP-hard when at most one gap per input row is
allowed, automatically also proving the hardness of
LHR in the general case.

A. A polynomial-time algorithm for Gapless-LHR

Problem: Gapless-LHR
Input: A gapless SNP matrix M
Output: The value LHR(M), as defined above

The LHR problem for gapless matrices was
proved to be polynomial-time solvable by Lancia
et. al in [3], but only with the genuine restriction
that no fragments are included in other fragments.
Our algorithm improves this in the sense that it
works for all gapless input matrices; our algorithm
is similar in style to the algorithm by Bafna et.
al. ([19]) that solves MFR (minimum fragment
removal), where the objective is not to maximise
the length of the haplotypes, but to minimise the
number of rows removed. Note that our dynamic-
programming algorithm computes Gapless-LHR(M)
but it can easily be adapted to generate the rows
that must be removed (and subsequently, the
partition that must be made) to achieve this value.

Lemma 5: Gapless-LHR can be solved in time
O(n2m + n3).

Proof: Let M be the input to Gapless-LHR,
and assume the matrix has size n × m. For row
i define l(i) as the leftmost column that is not a
hole and define r(i) as the rightmost column that
is not a hole. The rows of M are ordered such
that l(i) ≤ l(j) if i < j. Define the matrix Mi as
the matrix consisting of the first i rows of M and
two extra rows at the top: row 0 and row −1, both
consisting of all holes. Define W (i) as the set of
rows j < i that are not in conflict with row i.

For h, k ≤ i and h, k ≥ −1 and r(h) ≤ r(k)
define D[h, k; i] as the maximum sum of lengths
of two haplotypes such that:

• each haplotype is built up as a combination of
rows from Mi (in the sense explained above);

• each row from Mi can be used to build at most
one haplotype (i.e. it cannot be used for both
haplotypes);

• row k is one of the rows used to build a
haplotype and among such rows maximises
r(·);

• row h is one of the rows used to build the
haplotype for which k is not used and among
such rows maximises r(·).

The optimal solution of the problem, LHR(M), is
given by:

max
h,k|r(h)≤r(k)

D[h, k; n]. (III.1)

This optimal solution can be calculated by starting
with D[h, k, 0] = 0 for h, k ∈ −1, 0 and using the
following recursive formulas. We distinguish three
different cases, the first is that h, k < i. Under these
circumstances:

D[h, k; i] = D[h, k; i− 1]. (III.2)

This is because:

• if r(i) > r(k): row i cannot be used for the
haplotype that row k is used for, because row
k has maximal r(·) among all rows that are
used for a haplotype;

• if r(i) ≤ r(k): row i cannot increase the length
of the haplotype that row k is used for (because
also l(i) ≥ l(k));

• the same arguments hold for h.

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 13

The second case is when h = i; D[i, k; i] is equal
to:

max
j∈W (i), j 6=k

r(j)≤r(i)

D[j, k; i− 1] + f(i, j). (III.3)

Where f(i, j) = r(i) − max{r(j), l(i) − 1} is
the increase of the haplotype’s length. Equation
(III.3) results from the following. The definition
of D[i, k; i] says that row i has to be used for the
haplotype for which k is not used and amongst
such rows maximises r(·). Therefore, the optimal
solution is achieved by adding row i to some
solution that has a row j as the most-right-ending
row, for some j that agrees with i, is not equal
to k and ends before i. Adding row i to the
haplotype leads to an increase of its length of
f(i, j) = r(i) − max{r(j), l(i) − 1}. This term
is fixed, for fixed i and j and therefore we only
have to consider extensions of solutions that were
already optimal. Note that this reasoning does not
hold for more general, “gapped”, data.

The last case is when k = i; D[h, i; i] is
equal to:

max
j∈W (i), j 6=h

r(j)≤r(i)

{
D[j, h; i− 1] + f(i, j) if r(h) ≥ r(j),
D[h, j; i− 1] + f(i, j) if r(h) < r(j).

The above algorithm can be sped up by using
the fact that, as a direct consequence of (III.2),
D[h, k; i] = D[h, k; max(h, k)] for all h, k ≤ i ≤ n.
It is thus unnecessary to calculate the values
D[h, k; i] for h, k < i.

The time for calculating all the W (i) is O(n2m).
When all the W (i) are known, it takes O(n3)
time to calculate all the D[h, k; max(h, k)]. This
is because we need to calculate O(n2) values
D[i, k; i] and also O(n2) values D[h, i; i] that take
O(n) time each. This leads to an overall time
complexity of O(n2m + n3).

B. 1-gap LHR is NP-hard and APX-hard

Problem: 1-gap LHR
Input: SNP matrix M with at most one gap per
row.
Output: The value LHR(M), as defined earlier.

In this section we prove that 1-gap LHR is

APX-hard (and thus also NP-hard.) We prove this
by demonstrating (indirectly) an L-reduction from
the problem CUBIC-MAX-INDEPENDENT-SET -
the problem of computing the maximum cardinality
of an independent set in a cubic graph - which is
itself proven APX-hard in [9].

We reduce via the immediate problem Single
Haplotype LHR (SH-LHR). In this version of the
problem rows must be removed from the input
matrix until the remaining rows are mutually
non-conflicting. The objective is to maximise the
number of columns that have at least one non-hole
entry in the remaining rows.

The reduction chain looks as follows. We first
show an L-reduction from SH-LHR to LHR, such
that the number of gaps per row is unchanged.
We then show an L-reduction from CUBIC-MAX-
INDEPENDENT-SET to 2-gap SH-LHR. Next,
using an observation pertaining to the structure
of cubic graphs, we show how this reduction can
be adapted to give an L-reduction from CUBIC-
MAX-INDEPENDENT-SET to 1-gap SH-LHR.
This proves the APX-hardness of 1-gap SH-LHR
and thus (by transitivity of L-reductions) also 1-gap
LHR.

Lemma 6: SH-LHR is L-reducible to LHR, such
that the number of gaps per row is unchanged.

Proof: Let M be the n×m input to SH-LHR.
We may assume that M contains no duplicate
rows, because duplicate rows are redundant when
working with only one haplotype. We map the
SH-LHR input, M , to the 2n × m LHR input,
M ′, by taking each row of M and making a copy
of it. Informally, the idea is that the influence
of the second haplotype can be neutralised by
doubling the rows of the input matrix. Note that
this construction clearly preserves the maximum
number of gaps per row.

Now, let SOL(M ′) be the set that contains all
pairs of haplotypes (H1, H2) that can be induced
by removing some rows of M ′, partitioning the
remaining rows of M ′ into two mutually non-
conflicting sets, and then reading off the two
induced haplotypes. Similarly, let SOL(M) be
the set that contains all haplotypes H that can be

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 14

induced by removing some rows of M (such that
the remaining rows are mutually non-conflicting)
and then reading off the single, induced haplotype.
Note the following pair of observations, which both
follow directly from the construction of M ′:

(H1, H2) ∈ SOL(M ′) ⇒ H1, H2 ∈ SOL(M),
(III.4)

H ∈ SOL(M) ⇒ (H, H) ∈ SOL(M ′). (III.5)

To satisfy the L-reduction we need to show how
elements from SOL(M ′) are mapped back to el-
ements of SOL(M) in polynomial time. So, let
(H1, H2) be any pair from SOL(M ′). If |H1| ≥
|H2| map the pair (H1, H2) to H1, otherwise to H2.
This completes the L-reduction, and we now prove
its correctness. Central to this is the proof of the
following:

SH-LHR(M) =
1

2
LHR(M ′). (III.6)

The fact that SH-LHR(M) ≥ 1
2
LHR(M ′) follows

immediately from (III.4) and the mapping described
above. This lets us fulfil condition (II.2) of the
L-reduction definition, taking α = 2. The fact that
SH-LHR(M) ≤ 1

2
LHR(M ′) follows because, by

(III.5), every element in SOL(M) is guaranteed to
have a counterpart in SOL(M ′) which has a total
length twice as large.

We can fulfil condition (II.3) of the L-reduction by
taking β = 1

2
. To see this, let (H1, H2) be any pair

from SOL(M ′), and (without loss of generality)
assume that |H1| ≥ |H2|. Let r = LHR(M ′), the
distance of (H1, H2) from optimal is then:

r − (|H1|+ |H2|) ≥ r − 2|H1|. (III.7)

Let l = SH-LHR(M), then:

l − |H1| = r
2
− |H1|

= 1
2

(
r − 2|H1|

)

≤ 1
2

(
r − (|H1|+ |H2|)

)
.

(III.8)

Thus, taking β = 1
2

satisfies condition (II.3) of the
L-reduction.

Lemma 7: 2-gap SH-LHR is APX-hard.

Proof: We reduce from CUBIC-MAX-
INDEPENDENT-SET. Let G = (V,E) be

the undirected, cubic input to CUBIC-MAX-
INDEPENDENT-SET. We direct the edges of G
in the manner described by Observation 2, to give−→
G = (V,

−→
E). Thus, every vertex of

−→
G is now

out-out-in or in-in-out. A vertex w is a child of
a vertex v if there is an edge leaving v in the
direction of w i.e. (v, w) ∈ −→E , and in this case v
is said to be the parent of w.

Let vin be the number of vertices in
−→
G that

are in-in-out, and vout be the number of vertices
that are out-out-in. We build a matrix M , to be
used as input to 2-gap SH-LHR, which has |V |
rows and 2vin + vout columns. The construction of
M is as follows. (Each row of M will represent a
vertex from V , so we henceforth index the rows
of M using vertices of V .) Now, to each in-in-out
vertex of

−→
G , we allocate two adjacent columns of

M , and for each out-out-in vertex, we allocate one
column of M . (A column may not be allocated to
more than one vertex.) Note that, for this lemma,
it is not important how the columns are allocated;
in the proof of Lemma 10, the ordering is crucial.
For simplicity, we also impose an arbitrary total
order P on the vertices of V .

Now, for each vertex v ∈ V , we build row v
as follows. Firstly, we put 1(s) in the column(s)
representing v. Secondly, consider each child w
of v. If w is an out-out-in vertex, we put a 0 in
the column representing w. Alternatively, w is
an in-in-out vertex, so w is represented by two
columns; in this case we put a 0 in the left such
column (if v comes before the other parent of w
in the total order P) or, alternatively, in the right
column (if v comes after the other parent of w in
the total order P). The rest of the row consists of
holes.

This completes the construction of M . Note that
rows encoding in-in-out vertices contain two
adjacent 1s and one 0, with at most one gap in the
row, and rows encoding out-out-in vertices contain
one 1 and two 0s, with at most two gaps in the
row. In either case there are precisely 3 non-hole
elements per row. It is also crucial to note that,
reading down any one column of M , one sees
exactly one 1 and exactly one 0.

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 15

Fig. III.1. Example input graph to CUBIC-MAX-INDEPENDENT-
SET (see Lemmas 7 and 8) after an appropriate edge orientation has
been applied.

v3 v1 v2 v5 v5 v7 v8 v8 v4 v4 v6 v6

v1

v2

v3

v4

v5

v6

v7

v8

− 1 0 − − − − − 0 − − −
− − 1 0 − − − − − − 0 −
1 0 − − − − − − − 0 − −
− − − − − 0 − − 1 1 − −
− − − 1 1 − − 0 − − − −
− − − − 0 − − − − − 1 1
0 − − − − 1 0 − − − − −
− − − − − − 1 1 − − − 0

Fig. III.2. Construction of matrix M (from Lemma 7 and 8) for
graph in Figure III.1

Let K be any submatrix of M obtained by
removing rows from M , and let V [K] ⊆ V be
the set of vertices whose rows appear in K.
If the rows of K are mutually non-conflicting,
then the haplotype induced by K has length
3r where r is the number of rows in K. This
follows from the aforementioned facts that every
column of M contains exactly one 1 and one 0.
and that every row has exactly 3 non-hole elements.

We now prove that the rows of K are in conflict if
and only if V [K] is not an independent set. First,
suppose V [K] is not an independent set. Then there
exist u, v ∈ V [K] such that (u, v) ∈ −→E . In row v of
K there are thus 1(s) in the column(s) representing
vertex v. However, there is also (in row u) a 0 in
the column (or one of the columns) representing
vertex v, causing a conflict. Hence, if V [K] is not
an independent set, K is in conflict. Now consider
the other direction. Suppose K is in conflict. Then
in some column of K there is a 0 and a 1. Let u
be the row where the 0 is seen, and v be the row
where the 1 is seen. So both u and v are in V [K].
Further, we know that there is an out-edge (u, v)

in
−→
E , and thus an edge between u and v in E,

proving that V [K] is not an independent set. This
completes the proof of the equivalence relationship.

It follows that:
CUBIC-MAX-INDEPENDENT-SET(G)
= 1

3
SH-LHR(M).

(III.9)

The conditions of the L-reduction definition are now
easily satisfied, because of the 1-1 correspondence
between haplotypes induced (after row-removals)
and independent sets in G, and the fact that a size-
r independent set of G corresponds to a length-
3r haplotype (or, equivalently, to r mutually non-
conflicting rows of M .) The L-reduction is formally
satisfied by taking α = 3 and β = 1

3
. The two

functions that comprise the L-reduction are both
polynomial time computable.

Lemma 8: 1-gap SH-LHR is APX-hard.

Proof: This proof is almost identical to the
proof of Lemma 7; the difference is the manner in
which columns of M are assigned to vertices of G.
The informal motivation is follows. In the previous
allocation of columns to vertices, it was possible
for a row corresponding to an out-out-in vertex to
have 2 gaps. Suppose, for each out-out-in vertex,
we could ensure that one of the 0s in its row was
adjacent to the 1 in the row, with no holes in
between. Then every row of the matrix would have
(at most) 1 gap, and we would be finished. We now
show that, by exploiting a rather subtle property
of cubic graphs, it is indeed possible to allocate
columns to vertices such that this is possible.

Assume, that we have ordered the edges of
G as before to obtain

−→
G . Let Vout ⊆ V be those

vertices in V that are out-out-in. Now, suppose we
could compute (in polynomial time) an injective
function favourite : Vout → V with the following
properties:

• for every v ∈ Vout, (v, favourite(v)) ∈ −→E ;
• the subgraph of

−→
G induced by edges of the

form (v, favourite(v)), henceforth called the
favourite-induced subgraph, is acyclic.

Given such a function it is easy to create a total
enumeration of the vertices of V such that every
out-out-in vertex is immediately followed by its

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 16

favourite vertex. This enumeration can then be
used to allocate the columns of M to the vertices
of V , such that every row of M has at most one
gap. To ensure this property, it is necessary to
stipulate that, where favourite(v) is an in-in-out
vertex, the 0 encoding the edge (v, favourite(v))
is placed in the left of the two columns encoding
favourite(v). This is not a problem because every
vertex is the favourite of at most one other vertex.

It remains to prove that the function favourite
exists and that it can be constructed in polynomial
time. This is equivalent to finding vertex disjoint
directed paths in

−→
G such that every out-out-in vertex

is on such a path and all paths end in an in-in-out
vertex. Lemma 9 tells us how to find such paths.
We thank Bert Gerards for invaluable help with this.

This completes the proof that 1-gap SH-LHR
is APX-hard. (See Figures III.1 and III.2 for an
example of the whole reduction in action.)

Lemma 9: Let
−→
G be a directed, cubic graph

with a partition (Vout, Vin) of the vertices such that
the vertices in Vout are out-out-in and the vertices
in Vin are in-in-out. Then Vout can be covered, in
polynomial time, by vertex-disjoint directed paths
ending in Vin.

Proof: Observe that any two directed circuits
contained entirely within Vout are pairwise vertex
disjoint. Let V ′

out be obtained from Vout by shrinking
each directed circuit in Vout to a single vertex, and
let
−→
G′ be the resulting new graph. (Note that each

vertex in V ′
out has outdegree at least 2 and indegree

at most 1 and that the indegree of each node in Vin

is still 2, because we do not delete multiple edges.)
We now argue that it is possible to find a set of
edges F ′ in

−→
G′, with |F ′| = |V ′

out|, such that, for
each v ∈ V ′

out, precisely one edge from F ′ begins
at v, and such that no two edges in F ′ have the
same endpoint. We prove this by construction. For
each vertex u ∈ V ′

out that has a child v in V ′
out,

we can add the edge (u, v) to F ′, because v has
indegree 1 and therefore no other edges can end
at v. (In case u has two such children, we can
choose one of the edges to add to F ′). Thus we
are left to deal with a subset of vertices L ⊆ V ′

out

where every vertex in L has all its children in Vin.

Now consider the bipartite graph B with bipartition
(L, Vin) and an edge for every directed edge of

−→
G′

going from L to Vin. If we can find a matching in
B of size |L|, we can complete the construction of
F ′ by adding the edges from the perfect matching.
Hall’s Theorem states that a bipartite graph with
bipartition (X,Y) has a matching of size |X| iff,
for all X ′ ⊆ X , |N(X ′)| ≥ |X ′|, where N(X ′) is
the set of all neighbours of X ′. Now, note that each
vertex in L sends at least two edges across the
partition of B, and each vertex in Vin can accept
at most two such edges, so for each L′ ⊆ L it is
clear that |N(L′)| ≥ |L′|. Hence, the graph (L, Vin)
does indeed have a matching of size |L| and the
construction of F ′ can be completed.

Now, given that the graph induced by V ′
out is

acyclic, so is F ′. Let F be the set of edges in
−→
G

corresponding to those in F ′. F is acyclic and each
directed circuit C in Vout has exactly one vertex
vC that is a tail of an edge of F and no vertex that
is a head of an edge in F . Let PC be the longest
directed path in C that ends in vC . Then the union
of F and all PC over all directed circuits C in Vout

is a collection of paths ending in Vin and covering
Vout.

Finding cycles in a graph and finding a maximum
matching in a bipartite graph are both polynomial-
time computable, so the whole process described
above is polynomial-time computable.

Lemma 10: 1-gap LHR is APX-hard.

Proof: Follows from Lemma 8 and Lemma 6.

IV. CONCLUSION

This paper involves the complexity (under various
different input restrictions) of the haplotyping
problems Minimum Error Correction (MEC) and
Longest Haplotype Reconstruction (LHR). The
state of knowledge about MEC and LHR after
this paper is demonstrated in Table I. We also
include Minimum Fragment Removal (MFR)
and Minimum SNP Removal (MSR) in the table
because they are two other well-known Single
Individual Haplotyping problems. MSR (MFR) is
the problem of removing the minimum number

ON THE COMPLEXITY OF THE SINGLE INDIVIDUAL SNP HAPLOTYPING PROBLEM 17

of columns (rows) from a SNP-matrix in order to
make it feasible.

Binary (i.e. no holes) ? (Section II-C)
PTAS known [17]

MEC Gapless NP-hard (Section II-A)
1-Gap NP-hard (Section II-B),

APX-hard (Section II-B)
Gapless P (Section III-A)

LHR 1-Gap NP-hard (Section III-B)
APX-hard (Section III-B)

Gapless P [19]
MFR 1-Gap NP-hard [3]

APX-hard [19]
Gapless P [3]

MSR 1-Gap NP-hard [19]
APX-hard [19]

TABLE I

THE NEW STATE OF KNOWLEDGE FOLLOWING OUR WORK

Indeed, from a complexity perspective, the most
intriguing open problem is to ascertain the
complexity of the “re-opened” problem Binary-
MEC. It would also be interesting to study the
approximability of Gapless-MEC.

From a more practical perspective, the next
logical step is to study the complexity of these
problems under more restricted classes of input,
ideally under classes of input that have direct
biological relevance. It would also be of interest
to study some of these problems in a “weighted”
context i.e. where the cost of the operation in
question (row removal, column removal, error
correction) is some function of (for example) an a
priori specified confidence in the correctness of the
data being changed.

V. ACKNOWLEDGEMENTS

We thank Leen Stougie and Judith Keijsper for
many useful conversations during the writing of this
paper.

REFERENCES

[1] Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Jing
Li, The Haplotyping Problem: An Overview of Computational
Models and Solutions, Journal of Computer Science and Tech-
nology 18(6), 675-688 (November 2003)

[2] Bjarni V. Halldorsson, Vineet Bafna, Nathan Edwards, Ross
Lippert, Shibu Yooseph, and Sorin Istrail, A Survey of Com-
putational Methods for Determining Haplotypes, Proceedings
of the First RECOMB Satellite on Computational Methods
for SNPs and Haplotype Inference, Springer Lecture Notes in
Bioinformatics, LNBI 2983, pp. 26-47 (2003)

[3] Giuseppe Lancia, Vineet Bafna, Sorin Istrail, Ross Lippert, and
Russel Schwartz, SNPs Problems, Complexity and Algorithms,
Proceedings of the 9th Annual European Symposium on Algo-
rithms, 182-193 (2001)

[4] Alessandro Panconesi and Mauro Sozio, Fast Hare: A Fast
Heuristic for Single Individual SNP Haplotype Reconstruction,
Proceedings of 4th Workshop on Algorithms in Bioinformatics
(WABI 2004), LNCS Springer-Verlag, 266-277

[5] Harvey J. Greenberg, William E. Hart, Giuseppe Lancia, Op-
portunities for Combinatorial Optimisation in Computational
Biology, INFORMS Journal on Computing, 16(3), 211-231
(2004)

[6] Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan,
Segmentation Problems, Proceedings of STOC 1998, 473-482
(1998)

[7] C.H. Papadimitriou and M. Yannakakis, Optimization, approx-
imation, and complexity classes, Journal of Computer and
System Sciences 43, 425-440 (1991)

[8] Hoogeveen, J.A., Schuurman, P., and Woeginger, G.J., Non-
approximability results for scheduling problems with minsum
criteria, INFORMS Journal on Computing, 13(2), 157-168
(Spring 2001)

[9] Paola Alimonti, Vigo Kann, Hardness of approximating prob-
lems on cubic graphs, Proceedings of the Third Italian Confer-
ence on Algorithms and Complexity, 288-298 (1997)

[10] Piotr Berman, Marek Karpinski, On Some Tighter Inapprox-
imability Results (Extended Abstract), Proceedings of the 26th
International Colloquium on Automata, Languages and Pro-
gramming, 200-209 (1999)

[11] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, M. Protasi, Complexity and Approximation -
Combinatorial optimization problems and their approximability
properties, Springer Verlag (1999)

[12] Noga Alon, Benny Sudakov, On Two Segmentation Problems,
Journal of Algorithms 33, 173-184 (1999)

[13] Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan,
A Microeconomic View of Data Mining, Data Mining and
Knowledge Discovery 2, 311-324 (1998)

[14] Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan,
Segmentation Problems, Journal of the ACM 51(2), 263-280
(March 2004) Note: this paper is somewhat different to the
1998 version.

[15] Personal communication with Christos H. Papadimitriou, June
2005

[16] Rafail Ostrovsky and Yuval Rabani, Polynomial-Time Approx-
imation Schemes for Geometric Min-Sum Median Clustering,
Journal of the ACM 49(2), 139-156 (March 2002)

[17] Yishan Jiao, Jingyi Xu, Ming Li, On the k-Closest Substring and
k-Consensus Pattern Problems, Combinatorial Pattern Match-
ing: 15th Annual Symposium (CPM 2004) 130-144

[18] P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay,
Clustering in large graphs via Singular Value Decomposition,
Journal of Machine Learning 56, 9-33 (2004)

[19] Vineet Bafna, Sorin Istrail, Giuseppe Lancia, Romeo Rizzi,
Polynomial and APX-hard cases of the individual haplotyp-
ing problem, Theoretical Computer Science, 335(1), 109-125
(2005)

