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Introduction

• Parsimony Haplotyping (PH)

• A genotype is modelled as a string over the alphabet {0,1,2}.

• A haplotype is modelled as a string over the alphabet {0,1}.

• Two haplotypes h1, h2 resolve a genotype g iff:-

At each site where g has a 0, h1 and h2 both have a 0;

At each site where g has a 1, h1 and h2 both have a 1;

At each site where g has a 2, h1 and h2 are different i.e. 0/1 or 1/0.

• If g is resolved by h1 and h2 we write g = h1 + h2. But in general a 
genotype may be resolved by many different pairs of haplotypes.

• This leads to a natural optimisation problem…
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Parsimony Haplotyping (PH)

Input: A set of n genotypes G, each of length m;

Output: The smallest possible set of length-m haplotypes H such that each 
genotype is resolved by some pair of the haplotypes (in which case we 
say that H resolves G.)

• Toy example: suppose the input G is: 122, 201, 022.

• A smallest possible set of haplotypes that resolves G has size 4, e.g. 101, 
001, 110, 010.

101 
110+ 
122

001 
101+ 
201

010 
001+ 
022
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Adding a phylogenetic restriction to the PH model

Minimum Perfect Phylogeny Haplotyping (MPPH)

Input: A set of n genotypes G, each of length m

Output: The smallest possible set of length-m haplotypes H such that each 
genotype is resolved by some pair of the haplotypes and such that the 
haplotypes H permit a perfect phylogeny. Or ‘null’ if no solutions exist.

• A set of haplotypes permits an (undirected) perfect phylogeny iff the
haplotypes can be placed at the leaves of an unrooted evolutionary tree,
where each site mutates at most once.

• Well-known fact: assuming the haplotypes H are arranged as the rows 
of a matrix, H permits a perfect phylogeny iff the following forbidden 
submatrix F does not appear:

00
01
10
11
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• Much work has been done on PH, but very little on MPPH. Both problems are, 
in general, NP-hard. (The problem of determining whether ANY perfect 
phylogeny solution exists, PPH, is linear-time solvable.)

• Inspired by (amongst others) the paper “Islands of tractability for parsimony 
haplotyping” (Sharan, Halldórsson, Istrail - 2005) we wanted to explore the 
interface between ‘hard’ and ‘easy’ instances of these problems.

• PH(j,k) is the PH problem where each genotype has at most j 2s per row, and 
(assuming the input genotypes are given as the rows of a matrix) at most k 2s 
per column.

• A ‘*’ denotes no restriction e.g. PH(3,*) is the problem with no restriction on 
the number of 2s per column, but at most three 2s per genotype.

• Same definition for MPPH.

Bounded instances of PH and MPPH
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Before and after our paper

Parsimony Haplotyping (PH)

• PH(4,3) is APX-hard (Sharan, Halldórsson, Istrail – 2005)

• PH(3,*) is APX-hard (Lancia, Pinotti, Rizzi - 2004.)

• PH(2,*) is in P (Lancia et al, independently Cilibrasi et al - 2005.)

• PH(3,3) is APX-hard

• PH(*,1) is in P

Minimum Perfect Phylogeny Haplotyping (MPPH)

• NP-hard in general (Bafna, Gusfield, Hannenhalli, Yooseph - 2004.)

• MPPH(3,3) is APX-hard.

• MPPH(2,*) is in P, by reduction to PH(2,*)

• MPPH(*,1) is in P, by reduction to PH(*,1)

our results

our results
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• For both PH and MPPH, the main open problem left is (*,2).

• Sharan et al showed that PH(*,2) is in P for ‘clique’ instances.

• We found the analogous result for MPPH(*,2). Surprisingly complicated!

• Here I sketch our polynomial-time algorithms for:

• PH(*,1)

• MPPH(*,1)

• MPPH(*,2) on ‘clique’ instances.
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• Two genotypes g1 and g2 are said to be compatible iff at each site where 
they are non-equal, one of the two genotypes has a 2. For example 020 and 
210 are compatible but 020 and 120 are not. (Incompatible genotypes can 
never share haplotypes.)

• The Compatibility Graph Comp(G) of a set of genotypes G has:
a vertex for every genotype g in G;
an edge between two vertices g1, g2 iff g1 and g2 are compatible.

• A haplotype h is said to be consistent with g iff at each site where g and h 
are non-equal, g has a 2. For example 010 is consistent with 022 but 110 is 
not. If g1 and g2 are compatible and h is consistent with both, we write         
g1 ~h g2.

Compatibility and consistency
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0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1

g1

g2

g3

g4

g5

g6

g7

g1

g2

g7

g3

g4

g6

g5

Example of an input 
genotype matrix G

Compatibility graph 
Comp(G)
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The PH(*,1) compatibility graph has a special structure

In PH(*,1), the following facts hold:

(1) If two genotypes g1 and g2 are compatible, then there is precisely one
haplotype h that is consistent with both of them. (At each column, read off 
the non-2 element.) So each edge in Comp(G) corresponds to a unique 
haplotype.

(2) The compatibility graph Comp(G) is a 1-sum of cliques, and is thus chordal.

Related to (1),  the following is also true:

(3) Given any mutually compatible set of genotypes (which thus appear as a 
clique c in the compatibility graph), there is precisely one haplotype that is 
consistent with all of them. (At each column, read off the non-2 element.) 
We call this the clique haplotype hc for that clique c.
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0 0 1 0 2 0 1

2 0 2 0 0 0 1

0 0 1 2 0 0 1

0 0 1 0 0 0 2

0 0 1 1 0 2 1

1 2 0 0 0 0 1

0 0 1 1 0 0 1

g1

g2

g3

g4

g5

g6

g7

g1

g2

g3

h1

h1 h2

h2 h2

h2
h2

h2 g6

g5

g7 g4

Clique haplotype for red clique (i.e. h1) is: 0011001

Clique haplotype for blue clique (i.e. h2) is: 0010001

Clique haplotype for green clique (i.e.h3) is: 1000001

h1

h3



12

Algorithm idea:

• The graph Comp(G) is chordal, and thus has a simplicial vertex. (A vertex 
whose closed neighbourhood is a clique.) Removing a simplicial vertex (and 
its incident edges) still leaves a chordal graph.

• We build the solution H by repeatedly ‘peeling’ vertices away from 
Comp(G), each time adding haplotypes to a haplotype set H’ (that is initially 
empty.) Specifically:

• At every iteration, locate a simplicial vertex (genotype) g. Depending on 
which haplotypes are already in H’, add (at most) two haplotypes h1 and h2
(such that g = h1 + h2) to H’, and then remove g and its incident edges from 
Comp(G).

Repeat until Comp(G) is empty. Return H’ as the final solution H.

• But, for each g, how do we decide which h1 and h2 to add to H’? Tempting 
to always use the clique haplotypes, but that’s not always optimal...
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Try each of the following steps in order and stop once a step has been 
executed. (hc is the clique haplotype corresponding to g, defined at the 
start of the algorithm.) 

1. If g has no 2s, simply add g to H’. 

2. If g is already resolved by some pair of haplotypes in H’, there’s no need to 
add new haplotypes to H’.

3. If just adding the clique haplotype of g to H’ allows H’ to resolve g, do it.

4. If just adding some non-clique haplotype to H’ allows H’ to resolve g, do it.

5. If g is not an isolated vertex, add {hc, h} to H’ (where g = hc + h.)

6. Add any two haplotypes h1, h2 to H’ such that g = h1 + h2.

Optimality of algorithm proved by induction. (Not given here.)
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In MPPH(*,1) some resolutions are forbidden…

0 0

0 1

1 0

2 2

0 0

0 1

1 0

0 0

1 1

0 0

0 1

1 0

1 1

0 0

0 1

1 0

0 1

1 0

Two columns 
in G

0 0

0 1

1 0

resolve

Corresponding 
columns in H

Corresponding 
columns in H

Eliminate 
dupicates

Eliminate 
dupicates

= FORBIDDEN 
RESOLUTION

= SAFE 
RESOLUTION
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• In PH(*,1), there will – for each pair of columns – be at most one row that 
is 22, and if such a row exists there will be no other 2s in those columns.

• Idea: to reduce MPPH(*,1) to PH(*,1), we have to discourage such rows 
from resolving the forbidden way.

• We do this by adding, for each pair of columns where a 22 can be seen, a 
‘blocking’ column that biases resolutions in favour of the safe way.

Reducing MPPH(*,1) to PH(*,1) by discouraging 
forbidden resolutions

0 0

0 1

1 0

2 2

0 0 0

0 1 1

1 0 1

2 2 1

becomes

Idea is that, within PH(*,1), the 22 
might still choose the forbidden 
resolution (e.g. 00/11 in this case) 
but the haplotypes used to do this 
cannot be shared by any other 
genotypes, because of the extra 
column. So just as good, if not better, 
to choose the safe resolution. So 
(assuming feasibility) there exist 
optimal solutions to PH(*,1) where all 
such 22 resolutions are safe.



16

MPPH(*,2) on clique instances

• Sharan et al showed that PH(*,2) is in P if the compatibility graph is a clique 
i.e. if all genotypes are mutually compatible.

• We have proved the same for MPPH(*,2).

• Surprisingly complicated! Main complication is that, unlike the PH(*,2) case, 
using the all-0 haplotype can sometimes cause forbidden resolutions.

• Here I demonstrate the most important ideas/steps behind the algorithm.
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• We can assume (by a relabelling argument) that the input matrix is restricted 
to {0,2}. 

• If there are 3 or more genotypes in the input, the only haplotype that is 
consistent with all genotypes is the all-0 haplotype (because every column must 
contain a 0.)

• The restricted compatibility graph ResComp(G) is defined as follows:-

A vertex for every genotype g;

An edge between two genotypes g1 and g2 iff there exists some 
haplotype h not equal to the all-0 haplotype, such that g1 ~h g2. 
(Equivalently, iff there exists some column where g1 and g2 both have 2s.)

• For an edge (g1,g2) in ResComp(G), define the edge haplotype for that edge 
as the haplotype having 1s in columns where g1 and g2 both have a 2, and 0s 
everywhere else. (These are useful for avoiding the forbidden submatrix!)

Foundations for the MPPH(*,2)-clique algorithm
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1. If the input G does permit solutions, then every vertex in 
the restricted compatibility graph has degree at most 2 i.e. 
consists of paths, cycles and isolated vertices.

2. It is never permitted to resolve a degree-2 vertex in the 
restricted compatibility graph with the all-0 haplotype.

3. If you resolve a genotype g with haplotypes h1 and h2, 
and h1 and h2 are both consistent with other haplotypes, 
then h1 and h2 are uniquely defined (and, for deg-2 
vertices, are equal to the adjacent edge haplotypes.)

4. Genotypes that cannot share both their haplotypes, can be 
thought of as having at least one private haplotype that 
no other genotypes can share.

2 2 2

2 0 0

0 2 0

0 0 2

Critical observations

2 2

0 2

2 0

forbidden!

The 22 here must 
not be resolved 

00/11.
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Example of restricted compatibility graph

Vertices that in the beginning are degree-2 are coloured yellow. 
These can never be resolved using the all-0 haplotype!
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Step 1: Where degree-2 vertices can be resolved as the 
sum of their two adjacent edge haplotypes, do that.

A red edge denotes that the corresponding edge haplotype has been 
put in the solution. Resolved genotypes are also shown in red.

h1

g1

h2

h3 h4 h5

g2 g3

g1 = h1 + h2
g2 = h3 + h4
g3 = h4 + h5
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Step 2: Resolve genotypes that are adjacent to edge 
haplotypes added in the previous step (i.e. in this case 
where yellow vertices are next to red edges)
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The new red edges, representing the newly added haplotypes, will be 
private haplotypes and thus cannot be shared by any other genotypes 

(symbolised here by the edge leaving the vertex at an angle.)

Step 2: Resolve genotypes that are adjacent to edge 
haplotypes added in the previous step (i.e. in this case 
where yellow vertices are next to red edges), done
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Step 3: Unless all components are ‘bad’, or no black 
genotypes left, add all-0 haplotype and use it to resolve 
remaining black genotypes
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Step 3: Unless all components are ‘bad’, or no black 
genotypes left, add all-0 haplotype and use it to resolve 
remaining black genotypes…done!

(all-0)

(all-0) (all-0)

(all-0)
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Step 4: Each genotype that is still unresolved but 
adjacent to an edge haplotype already in the solution, 
resolve it using that edge haplotype…

(all-0)

(all-0)

(all-0)
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Step 4: Each genotype that is still unresolved but 
adjacent to an edge haplotype already in the solution, 
resolve it using that edge haplotype…done.

(all-0)

(all-0) (all-0)

(all-0)
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(all-0)

(all-0) (all-0)

(all-0)
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Open problems…lots to do!

• Complexity of PH(*,2)?
• Complexity of MPPH(*,2)?
• Complexity of PH(3,2)?
• Complexity of MPPH(3,2)?
• Is MPPH(j,k) always of the same complexity as PH(j,k)?
• In how far is PH reducible to MPPH, and vice-versa?
• Approximation algorithms for MPPH(j,*) for fixed j
• Using the fact that k is fixed to improve the 2j-1 approximation 
algorithms for PH(j,k)
• How close are the solutions provided by the various PPH feasibility 
algorithms (i.e. “produce ANY solution”) to optimal MPPH solutions?
• How feasible is it to simply search through the (implicit) set of all PPH 
solutions?
• Using more biologically interesting restraints (e.g. galled networks, 
SNP block partitioning models)
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Open problems…lots to do!

• Complexity of PH(*,2)?
• Complexity of MPPH(*,2)?
• Complexity of PH(3,2)?
• Complexity of MPPH(3,2)?
• Is MPPH(j,k) always of the same complexity as PH(j,k)?
• In how far is PH reducible to MPPH, and vice-versa?
• Approximation algorithms for MPPH(j,*) for fixed j
• Using the fact that k is fixed to improve the 2j-1 approximation 
algorithms for PH(j,k)
• How close are the solutions provided by the various PPH feasibility 
algorithms (i.e. “produce ANY solution”) to optimal MPPH solutions?
• How feasible is it to simply search through the (implicit) set of all PPH 
solutions?
• Using more biologically-interesting restraints (e.g. galled networks, 
SNP block partitioning models)

Thankyou for listening!
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(all-0)

(all-0) (all-0)

(all-0)

Steps 5: Take a maximum matching on the remaining 
yellow genotypes and add the corresponding edge 
haplotypes…
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(all-0)

(all-0) (all-0)

(all-0)

Step 5: Take a maximum matching on the remaining 
yellow genotypes and add the corresponding edge 
haplotypes…done.
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(all-0)

(all-0) (all-0)

(all-0)

Step 6: Finally, resolve each remaining isolated 
genotype using an arbitrary edge haplotype (plus one 
other haplotype.)
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