
On a Fixed Haplotype Variant of the Minimum
Error Correction Problem

Axel Goblet, Steven Kelk, Matúš Mihalák, and Georgios Stamoulis

Department of Data Science & Knowledge Engineering
Maastricht University, The Netherlands

a.goblet@student.maastrichtuniversity.nl, {matus.mihalak, steven.kelk,

georgios.stamoulis}@maastrichtuniversity.nl

Abstract. Haplotype assembly is the problem of reconstructing the two
parental chromosomes of an individual from a set of sampled DNA-
sequences. A combinatorial optimization problem that models haplotype
assembly is the Minimum Error Correction problem (MEC). This prob-
lem has been intensively studied in the computational biology literature
and is also known in the clustering literature: essentially we are required
to find two cluster centres such that the sum of distances to the nearest
centre, is minimized. We introduce here the problem Fixed haplotype-
Minimum Error Correction (FH-MEC), a new variant of MEC which
corresponds to instances where one of the haplotypes/centres is already
given. We provide hardness results for the problem on various restricted
instances. We also propose a new and very simple 2-approximation algo-
rithm for MEC on binary input matrices.

1 Introduction

Humans have, genetically speaking, an extremely high degree of similarity: at
the vast majority of positions in our DNA sequence we share the same DNA
symbol. The relatively few positions at which we differ are known as Single
Nucleotide Polymorphisms (SNP) [5]. In most cases the variation observed at a
given position involves two nucleotides (as opposed to three or four). For this
reason the SNPs of an individual can be summarized as a string over a binary
alphabet, also known as a haplotype.

A classical computational challenge in the genomic era is to efficiently infer
such haplotypes from a set of overlapping, aligned haplotype fragments which
have been obtained by sequencing the DNA at different intervals. This problem
is complicated by the fact that humans (and diploid organisms in general) ac-
tually have two haplotypes (chromosomes): one inherited from the mother, and
one from the father. We do not know easily which haplotype fragment originated
from which of the two haplotypes, so the goal is to construct two haplotypes and
to map the fragments to these two haplotypes. This is the haplotype assembly
problem [11]. The Minimum Error Correction (MEC) model imposes the fol-
lowing objective function on the selection of the haplotypes: find two haplotypes

such that, summing over all the input fragments, the Hamming distance (in-
terpreted as ‘errors corrected’) from the fragment to its nearest haplotype, is
minimized. (When a fragment contains no information about a given position, a
‘wildcard’ character is used which does not contribute to the Hamming distance).
The haplotypes can be thought of as cluster centres. This problem, originally
introduced in 2001 [10], has been intensively studied in the computational bi-
ology literature: we refer to articles [7, 3, 2, 4] and the references therein for a
comprehensive overview. We assume that the optimal solution has always cost
greater that zero since, otherwise, it is a trivial task to find the optimal solution.

Without restrictions on the use of wildcards it is straightforward to show NP-
hardness, and the problem remains hard under a number of natural restrictions.
For many years, however, it was unclear whether the problem is NP-hard if
there are no wildcards in the input: this is the BinaryMEC problem. This was
finally settled in 2014 by Uriel Feige, who showed that the equivalent Hypercube
2-segmentation problem is NP-hard [8].

Here we present a new variant of the problem: Fixed-haplotype Minimum
Error Correction (FH-MEC). In this version of the problem one fixed haplotype
(not necessarily the optimal one) is given as part of the input, and we are asked to
find the other that minimizes the total error correction. This is a quite natural
variation which models the situation when one of the haplotypes has already
been determined. Fast algorithms for FH-MEC could also be used to heuristically
explore the space of solutions to MEC, and thus to provide warm-start upper
bounds for MEC algorithms.

It is straightforward (by simply adding many copies of the fixed haplotype to
the input) to reduce FH-MEC to MEC in an approximation-preserving way (un-
der preservation of common restrictions on the use of wildcards), so the Binary
Fixed-Haplotype variant of MEC, BinaryFH-MEC, inherits the PTAS that via
the clustering literature was already known to exist for BinaryMEC [9, 12, 4].
Determining the complexity of FH-MEC is, however, a more involved task since
there is no obvious reduction in the opposite direction. We show in this arti-
cle that FH-MEC is APX-hard by providing an L-reduction from the MaxCut
problem on cubic graphs. Our central result is a proof that BinaryFH-MEC is
NP-hard. This is a non-trivial adaption of the elegant proof by Feige [8]. Feige,
who reduces from MaxCut, works purely with `1-norms, but unfortunately this
option is not open to us due to the presence of the fixed haplotype, which cannot
be interpreted this way. Another difficulty posed is that we also have to explicitly
identify a fixed haplotype sufficient to induce hardness, and deal with a number
of subtle technicalities concerning the way Hadamard (sub)matrices, and subma-
trices encoding the endpoints of graph edges (from the maxCut instance), are
divided between the fixed haplotype and the variable haplotype. Although the
NP-hardness of BinaryFH-MEC implies the NP-hardness of UngappedFH-
MEC (where each haplotype fragment covers a contiguous interval of positions),
we show an alternative NP-hardness reduction for this problem which is much
simpler and potentially easier to manipulate into stronger forms of hardness,
and thus of independent interest.

2

Ending the article on a positive note, we return to BinaryMEC. We follow
the trend towards simplification given in [3] and provide another very simple
polynomial-time 2-approximation algorithm for this problem. Our algorithm has,
compared to [3], lower polynomial dependency on the length of the haplotypes
we are constructing (at the expense of higher dependency on the number of
fragments).

Definitions and notations: A fragment matrix F is a matrix with n rows and
m columns, every entry of which is in {−1, 1, ∗}. A ∗ entry is called a hole, and
encodes an unknown value. F is binary if F contains no holes. F is ungapped if,
for every row r ∈ F , there exists no hole in r such that there is a non-hole entry
somewhere to the left and somewhere to the right of it.

Let ri, rj be two distinct rows of F . By ri[k] we denote the kth entry of
ri. Given two vectors ri, rj of the same dimension their (generalized) Hamming
distance is defined as

d(ri, rj) = |{k : ri[k], rj [k] ∈ {−1, 1}, ri[k] 6= rj [k]}|. (1)

i.e., d(ri, rj) counts in how many positions the two vectors differ, where ∗ char-
acters in one vector induce no errors, no matter what is the corresponding entry
of the other vector. The Minimum Error Correction (MEC) problem is defined
as follows.

Problem: MEC
Input: An n×m fragment matrix.
Output: Two m-dimensional vectors h1, h2 ∈ {−1, 1}m, such that the following
sum over all rows of F is minimized:∑

ri∈F
min

{
d(h1, ri), d(h2, ri)

}
.

In other words, the goal is to find two haplotypes h1 and h2 minimizing the sum
of (generalized) Hamming distances of each row of F to its closest haplotype.
This creates a bipartition of the rows into two groups, where rows that share
the same closest haplotype are in the same group or partition. Ties can be
broken arbitrarily. To make a row equal to its closest haplotype, the differing
positions (errors) would have to be corrected. By minimizing the sum of these
error corrections, the most likely parental haplotypes are found. Observe that a
bipartition of the rows immediately induces two haplotypes by a simple majority
voting rule on the rows within the same bipartition. Two variants of this problem,
UngappedMEC and BinaryMEC, minimize the same function, but take as
input an ungapped and binary fragment matrix, respectively.

In the Fixed-Haplotype MEC (FH-MEC) problem, one of the haplotypes
h1, h2 is fixed and part of the input:

Problem: FH-MEC
Input: An n×m fragment matrix F and an m-dimensional vector h1 ∈ {−1, 1}m
(the fixed centre).

3

Output: An m-dimensional vector h2 ∈ {−1, 1}m, such that the following is
minimized: ∑

ri∈F
min

{
d(h1, ri), d(h2, ri)

}
.

For FH-MEC, binary and ungapped variants exist as well. In this paper, the
haplotypes h1 and h2 are sometimes described as the fixed and variable haplo-
types, respectively.

Given a minimization problemΠ, we say that an algorithmA is a ρ-approximation
algorithm if for any given instance I for Π (i) A runs in polynomial time in the
size of I, and (ii) it outputs a solution sol(I) with value at most ρ · opt(I). Here
opt(I) corresponds to the optimal solution value for I. Note that ρ ≥ 1.

2 APX-Hardness of FH-MEC

In this section we will prove that FH-MEC is APX-hard by showing that the
CubicMaxCut problem, where the input graph is cubic, L-reduces [13] to our
problem. A cubic graph is a graph where every vertex has exactly three adjacent
vertices (i.e., the degree of each vertex is exactly three). MaxCut is APX-hard,
even for cubic graphs [1]. Moreover, the value of MaxCut on cubic graphs has
a lower bound of 2/3 of the number of the edges [4], which will be used to prove
that the proposed reduction is indeed an L-reduction.

Theorem 1. FH-MEC is APX-hard.

Proof. Let G = (V,E) be an arbitrary, cubic, connected graph corresponding
to an input to the CubicMaxCut problem. Let F be a |V | × 2|E| fragment
matrix to be constructed as follows: Every edge e ∈ E is represented by a block
of two columns of F , and every vertex v ∈ V is represented by a row of F . F is
constructed as follows: First arbitrarily orient the edges of the graph. For every
edge e = (u, v), set its corresponding columns in F to

(
1 −1

)
in row u, and to(

−1 1
)

in row v and set its corresponding columns in the other rows to
(
∗ ∗
)
.

A simple example for the cycle graph C3 on vertices {1, 2, 3} with orientations
(1, 2), (2, 3), (1, 3) is given below.

F =

 1 −1 ∗ ∗ 1 −1
−1 1 1 −1 ∗ ∗
∗ ∗ −1 1 −1 1

Now, let the fixed haplotype h1 be the all −1 vector. We will first prove that

MaxCut(G) = c if and only if UngappedFH-MEC(F, h1) = 2|E| − c. Then,
we will show that the conditions of an L-reduction are satisfied. There are 2
cases to consider:

Two vertices connected by an edge are in the same partition: The rows
containing

(
−1 1

)
and

(
1 −1

)
will be in the same partition. If both rows are

4

closest to h1 (having value
(
−1 −1

)
in the two corresponding columns), then

these columns will contribute 2 to the error correction. If both rows are clos-
est to the variable haplotype h2, any values on the corresponding columns
of h2 will contribute 2 to the error correction.

Two vertices connected by an edge are not in the same partition: In
every pair of columns representing an edge, there are only two rows filled
with numbers. If these rows are placed in separate partitions, the row closest
to h1 will increase the error correction by 1. h2 can be set to the other row
without contributing to the error correction.

For vertices that are not connected by an edge, there is no column pair that
is not already covered in the two cases discussed above. For every column pair
covered in cases 1 and 2, the rows corresponding to these vertices will be

(
∗ ∗
)
.

Thus, they do not contribute to the error correction.
For every edge, either case 1 or case 2 will hold. Edges that are split over

the partitions (i.e., cut-edges) will contribute 1 to the error correction (case
2). Edges that are not split over the partitions will contribute 2 to the error
correction (case 1). The minimum error correction is found by maximizing the
number of cut edges. There are |E| edges in G. Therefore, c edges are cut iff the
error correction of a solution is 2|E| − c.

To complete the proof, we will show that the conditions of an L-reduction
are satisfied. Let G be an instance of CubicMaxCut. Let R(G) = (F, h1 =
{−1}2|E|) be the instance of FH-MEC that is constructed from G. Clearly, R(G)
can be constructed in polynomial time. Let Opt(G) be the value of the maximum
cut of G. Let Opt(R(G)) be the minimum error correction of R(G). Lastly, let
s be a feasible solution of R(G) and S(s) the corresponding solution for G and
let c(s) and c(S(s)) be their respective costs. According to the definition of an
L-reduction [13], two conditions need to be satisfied:

Opt(R(G)) ≤ αOpt(G) (2)

|Opt(G)− c(S(s))| ≤ β|Opt(R(G))− c(s)| (3)

where α, β are positive constants. We have that Opt(G) ≥ 2/3|E| for any cubic
graph G. We showed that Opt(R(G)) = 2|E| − Opt(G) ≤ 2Opt(G). Therefore,
taking α = 2 will be sufficient to satisfy Equation (2). For any bipartition s of
F of cost c(s), the cost of the corresponding cut is c(S(s)) = 2|E| − c(s). Thus,
Opt(G)−c(S(s)) = Opt(G)−2|E|+c(s), and Opt(R(G))−c(s) = 2|E|−Opt(G)−
c(s). This shows that Opt(G)−c(S(s)) = −(Opt(R(G))−c(s)). Therefore, taking
β = 1 will satisfy Equation 3) and this completes the proof. ut

3 NP-Hardness of BinaryFH-MEC

NP-hardness for a variant of BinaryMEC was proven by a reduction from
MaxCut [8]. In that variant the objective is to maximize the sum of the `1
norms of the vector sums of the rows of each bipartition, rather than to mini-
mize the error correction as we are interested in this paper. Here, we will prove

5

NP-hardness for BinaryFH-MEC using a reduction inspired by [8]. A vanilla
approach does not work and we need to resolve several technicalities that arise
from the difference in the objective function and from the presence of a fixed
center. In the following we will show that optimizing the one objective function
is equivalent to optimizing the other by showing how to translate one objective
function value to another. The following allows the conversion of an `1 norm to
an error correction.

Lemma 1. Let P be a subset of np rows of a binary fragment matrix F . The
`1 norm of the sum of the rows of P is l, if and only if the contribution to the
error correction of the rows is (npm− l)/2.

Proof. Let nmaj be the number of bits in P that belong to the majority bit of
their column. Let nmin be the bits that belong to minority bit of their column. If
a column contains equal numbers of −1’s and 1’s, the majority bit can be chosen
arbitrarily. Let l be the `1 norm of the sum of the rows of P . The contribution
of a column to l is the absolute difference between the number of majority and
minority bits in that column. Therefore, l = nmaj − nmin.

The total number of bits in P is npm = nmaj + nmin. The contribution of P
to the error correction is equal to the number of minority bits nmin in P . We
have that nmin = npm− nmaj = npm− nmin − l from which we immediately get
that nmin = (npm−l)/2. ut

Corollary 1. Given a bipartition of the rows of a binary matrix, the task of
maximizing the `1 norm of the sum of the rows of each partition is equivalent to
minimizing the error correction.

The reduction involves the use of Hadamard matrices. We recall that an M -
dimensional Hadamard matrix is a set of M row vectors in {−1, 1}M , such that
the vectors are pairwise orthogonal. This means that every pair of vectors will
differ in exactly M/2 positions. Hadamard matrices can be constructed recursively
[14] as follows: Let H1 =

(
1
)
. From here, we can construct H2M from HM by

using

H2M =

(
HM HM

HM −HM

)
. (4)

This construction is also known as Sylvester’s construction (James Joseph
Sylvester,1867). Using this recursive construction, M will be a power of 2. In
the proof of our reduction, we use the fact that all columns of a recursively
constructed Hadamard matrix HM contain M/2 1’s:

Lemma 2. Let HM be an M -dimensional Hadamard matrix that is constructed
as above. In each column of HM , except for the first one, the number of 1’s in
that column is M/2.

Proof. Since the first row contains only 1’s, and the rows of HM are pairwise
orthogonal, all other rows contain M/2 1’s. Due to the recursive construction by
Equation (4), HM = HT

M . Therefore, all columns except the first column contain
M/2 1’s. ut

6

Feige showed an upper bound on the `1-norm of an arbitrary subset of q
vectors of a Hadamard matrix (Proposition 2 in [8]):

Lemma 3 ([8]). Consider an arbitrary set of q distinct vectors from an arbi-
trary Hadamard matrix HM . Then, the `1 norm of their sum is at most

√
qM .

Theorem 2. BinaryFH-MEC is NP-hard.

Proof. Given a graph G = (V,E), an instance to the MaxCut problem, an
M |V | ×M |E| fragment matrix F is constructed where M will be fixed later on.
Every vertex v ∈ V is represented by a block of M rows, and every edge e ∈ E is
represented by a block of M columns. Arbitrarily orient all edges e ∈ E so every
edge is now an ordered pair of vertices. For every edge e = (u, v), in the block of
columns representing e, set the block representing vertex u to all 1’s, and set the
block representing vertex v to all −1’s. Set each block representing one of the
remaining vertices (not incident to e) to the M -dimensional Hadamard matrix
HM , constructed recursively as shown in Equation (4).

The fixed haplotype h1 ∈ {−1, 1}M |E| is set as follows: for each block of
columns representing an edge, the corresponding coordinates of h1 are set to
M/2 1’s followed by M/2 −1’s.

We will first discuss the case where an optimum solution to BinaryFH-
MEC on the matrix F and fixed haplotype h1 never splits the rows belonging to
a single vertex block to two different parts of the bipartition. Such a block of rows
will be assigned to either the fixed haplotype h1 or the variable haplotype h2.
For each block of columns representing an edge, there are 4 options to consider.
Each of these options shows the possible values for the error correction of cut
and uncut edges. After that we will calculate the contribution of the blocks of
Hadamard matrices to the error correction. In the following, when we say that
an edge is cut we mean that the block that corresponds to one if its vertices is
assigned to one haplotype but the block corresponding to the other vertex to
the other haplotype.

The edge is cut and the block of −1’s is closest to h2. The block of 1’s
corresponding to one of the vertices incident to the edge, will contribute
M2
/2 to the error correction. If the block of −1’s is the only block closest to

h2, h2 can be set to all −1’s and the block of −1’s will not contribute to the
error correction. If other rows, that include blocks with Hadamard matrices
are included in h2, the first column of h2 will be set to 1, and the block of
−1’s will contribute M to the error correction.

The edge is cut and the block of 1’s is closest to h2. The block of −1’s
will cause an error correction of M2

/2. h2 can be set to all 1’s on the corre-
sponding entries without contributing to the error correction.

The edge is not cut and both blocks are closest to h2. If both blocks are
assigned to h2, the first column among the rows assigned to h2 will always
have 1 as a majority bit. In every other column, there will be no unique
majority bit, making the haplotype choice unimportant. The two blocks to-
gether will contribute M2 to the total error correction.

7

The edge is not cut and both blocks are closest to h1. In the first M/2
columns, the block of 1’s will not contribute to the error correction and the
block of −1’s will contribute M2

/2. In the second M/2 columns, the block
of −1’s will not contribute to the error correction and the block of 1’s will
contribute M2

/2. The total contribution to the error correction for the two
blocks will be M2.

From the cases above it is clear that, when ignoring the Hadamard blocks, a
cut edge will contribute to the error correction either M2

/2 or M2
/2 + M , while

an uncut edge will have contribution of M2. Note that every Hadamard block
will have no error in the first column and an error correction of exactly M/2 in
each one of the remaining columns, regardless which haplotype is assigned to,
yielding a total error correction of M(M−1)/2. Note that for each edge there are
(|V | − 2) Hadamard blocks in that column block representing that edge, thus in
total we have (|V | − 2)|E| Hadamard blocks.

Summing up the terms of (i) the c cut edges each one contributing either
M2
/2 or M2

/2 + M , (ii) the |E| − c uncut edges each one with contribution of
M2, and (iii) (|V | − 2)|E| Hadamard matrices each one contributing M(M−1)/2,
we see that a cut of size c will have an error correction ec in the interval[(

(|V ||E| − c)M2 − |E|M(|V | − 2)
)

2
,

(
(|V ||E| − c)M2 −M((|V | − 2)|E|+ 2c)

)
2

]
It is straightforward to see that the difference in error correction between cuts
of size c and c + 1 is at least M2

/2 − (c + 1)M . By taking M ≥ 2|V |2|E|2 and
since c ≤ |E|, knowing ec, it is always possible to distinguish between cuts of
size c and c+ 1.

On the other hand, it could be possible that splitting rows belonging to a
block (representing a vertex) could give us a lower error correction as opposed
to not splitting a block. If this potential decrease is less than M2

/2− (c + 1)M ,
it is still possible to distinguish between cuts of size c and c+ 1.

Assume a Hadamard block is split, and q of its rows are closest to h2. By
Lemma 3, the `1 norm of these q rows is at most

√
qM . By Lemma 1, the

contribution to the error correction of this subset is at least (qM−√qM)/2. The
crucial observation is that a fixed haplotype h1 is equal to one of the rows of HM

i.e., there is a row in HM that has M/2 1’s followed by M/2 −1’s. This fact can be
derived from the recursive construction shown in Equation (4). Abusing slightly
notation, we say that that row is equal to h1. Thus, all rows, except the one row
equal to h1, will contribute M/2 to the error correction. Summing up, this will be
(M − q− 1)M/2. From here it follows that the contribution of a split Hadamard
codematrix to the error correction is at least (M2− (

√
q+ 1)M)/2. Since q < M

(since we assume splitting of the Hadamard blocks), splitting a Hadamard block
can decrease the total error correction by at most M3/2, by Lemma 3. There
are (|V | − 2)|E| Hadamard blocks in F , so taking M � O(|V |2|E|2), the total
decrease is at most M2

/2− (c+ 1)M .
Lastly, we investigate whether partially cutting edges can close the gap be-

tween cuts of size c and c+ 1. Assume an edge e = (u, v) is cut partially, and its

8

corresponding blocks of 1’s and −1’s are distributed over both partitions. Let
xu, xv be the fractions of rows corresponding to vertices u, v, respectively, which
are closest to h2 (and so (1− xu), (1− xv) fractions of rows are assigned to h1).
In this bipartition, by majority voting, the contribution to the error correction
will be at least min(xu, xv)M2. For the rows closest to h1, the contribution will
be (2 − xu − xv)M

2
/2. Thus, the total contribution tc of the edges to the error

correction is

tc = min(xu, xv)M2 +

(
2−min(xu, xv)−max(xu, xv)

)
M2

2

= M2 −
(

max(xu, xv)−min(xu, xv)

)
M2

2

= M2 − |xu − xv|
M2

2

= M2 − ye
M2

2
.

In the above expression, ye is the extent to which e is cut. Summing up
over all edges, the total contribution of the blocks of 1’s and −1’s to the error
correction is |E|M2 − M2

/2
∑
ye. The term

∑
ye can be bounded by observing

that local search can always change a fractional cut into an integer cut, which
is at least as large. Indeed, within a connected set of fractional vertices we can
always either increase them all by some amount of decrease them all by some
amount such that in each case at least one of the fractional vertices becomes
1 or 0 respectively. Since we change all the fractional values at the same time
by the same amount, this does not alter (i.e., worsen) the value of the term
ye = |xu−xv|. Hence,

∑
ye ≤ c, the value of the cut. Thus, the edges contribute

at least (|E| − c/2)M2 to the error correction, allowing a maximum decrease of
cM , which cannot close the gap between cuts of size c and c+ 1. ut

4 NP-Hardness of UngappedFH-MEC

The NP-hardness of UngappedFH-MEC is implicitly proven by Theorem 2.
The proof that follows does not involve the use of Hadamard matrices, and is
therefore less technical and more intuitive. Since little is known yet about the
approximability of both UngappedMEC and UngappedFH-MEC, this more
straightforward proof might see potential use in future research.

Theorem 3. UngappedFH-MEC is NP-hard.

Proof. Let G = (V,E) be an arbitrary, connected graph. Let F be a (M+ |V |)×
4|E| ungapped fragment matrix. Here, M will be a sufficiently large number.
Every edge e ∈ E is represented by a block of four columns of F , and every
vertex v ∈ V is represented by one of the rows of F . F is constructed as follows:
As usual, each edge is oriented arbitrarily. For every edge e = (u, v), set its
corresponding columns in F to

(
1 1 −1 −1

)
in row u, and to

(
−1 −1 1 1

)
in row

9

v. Set the corresponding block of columns in all other rows corresponding to
vertices to

(
1 −1 1 −1

)
. Now, set its corresponding columns in M/2|E| of the last

M rows to
(
1 1 −1 −1

)
, and in M/2|E| rows to

(
−1 −1 1 1

)
. In the remaining

blocks of columns, set all values in these rows to ∗. Lastly, let the fixed haplotype
h1 be −1 in all positions.

A simple example of the above construction for the simple triangle graph C3

with vertices {1, 2, 3} and oriented edges {(1, 2), (2, 3), (1, 3)} is given below.

F =

1 1 −1 −1 1 −1 1 −1 1 1 −1 −1
−1 −1 1 1 1 1 −1 −1 1 −1 1 −1

1 −1 1 −1 −1 −1 1 1 −1 −1 1 1
1 1 −1 −1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
−1 −1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 1 1 −1 −1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ −1 −1 1 1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 −1 −1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −1 −1 1 1

M/(2|E|) copies

(5)

For every set of columns representing an edge, the variable haplotype h2 will
either be

(
1 1 −1 −1

)
or
(
−1 −1 1 1

)
. By doing this, half of the last M rows

will not contribute to the error correction. The other half can simply be assigned
to h1, contributing M to the error correction. Setting h2 to a value other than(
1 1 −1 −1

)
or
(
−1 −1 1 1

)
will increase the error correction among the last M

rows by at least M/2, since M/2 rows contribute 0 to the error correction in
these configurations. Since there are only 4|E||V | values in the upper |V | rows,
the decrease in error correction of the new configuration can be at most 4|E||V |.
Therefore, when setting M > 8|E||V |, no different configuration will yield an
optimum result.

Any row of the first |V | rows that is assigned to h1, will contribute 2 to the er-
ror correction for every edge, since the possible values

(
1 1 −1 −1

)
,
(
−1 −1 1 1

)
and

(
1 −1 1 −1

)
all have a hamming distance of 2 to

(
−1 −1 −1 −1

)
.

Let e = (u, v) be an edge that is part of a maximum cut of G. If u is assigned
to h2, then the h2 can be set to

(
1 1 −1 −1

)
, causing row u not to contribute to

the error correction in the columns corresponding to e. If v is also assigned to
the h2, it will contribute 4 to the error correction in the columns corresponding
to e. When assigning v to h1 instead, the contribution will be 2. It follows that
assigning two vertices that are connected by an edge to the same haplotype
will contribute 4 to the error correction in the columns corresponding to that
edge. Assigning the vertices to different haplotypes will contribute 2 to the error
correction. Since c = MaxCut(G) edges can be split up this way, the total error
correction for the edges is 4|E| − 2c. Sequences that do not encode an edge will
contribute 2 to the error correction in any haplotype. There are |E|(|V | − 2) of
these sequences, yielding an error of 2|E|(|V | − 2). Combining the errors of the
edges, the values that do not encode an edge, and the last M rows, the total error
correction is equal to 2|E||V |+M − 2c. Since M , |V | and |E| are known for any

10

instance, the maximum cut can always be determined based on the minimum
error correction. ut

5 A Simple 2-Approximation for BinaryMEC

For the BinaryMEC polynomial time approximation schemata (PTAS) are
known [9, 12]. In [3] a simple and fast 2-approximation algorithm was shown.
The algorithm follows the simple observation that given a “conflict-free” matrix
M , then any heterozygous column (i.e., not all 1 or not all -1 column) of M
naturally induces a bipartition of the rows of M1. Their algorithm tries to built
from any binary matrix M a conflict free matrix M ′ that is induced by a column
of M .

Here we give an even simpler 2-approximation algorithm for BinaryMEC.
We show that it is enough to work directly with rows and, in particular, we show
that there always exists a pair of rows of M that when considered as the two
haplotypes h1 and h2 induce a 2-approximate solution. The algorithm simply
iterates over all pairs of rows and picks the pair inducing the smallest error
correction.

Theorem 4. For every binary matrix F , there exists a pair of rows r1, r2 such
that taking r1, r2 as the haplotypes will yield a 2-approximation to BinaryMEC.

Proof. Let h1 and h2 be the haplotypes of an optimum solution to BinaryMEC.
Let R1 and R2 be the partition of rows induced by h1 and h2, respectively.
Thus, the cost of the optimum solution is

∑
r∈R1

d(r, h1) +
∑

r∈R2
d(r, h2) =:

opt. For i = 1, 2, let ri ∈ Ri be the row from Ri that is closest to hi (in
the Hamming distance). Then, by triangle inequality, for every row r ∈ Ri,
d(r, ri) ≤ d(r, hi) + d(hi, ri) ≤ 2d(r, hi).

Let R∗1, R
∗
2 be the partition of the rows induced by considering r1 and r2 as

the haplotypes. The cost of this partition is minimum among all partitions, and
thus at most the cost induced by the partition R1, R2, which is

∑
r∈R1

d(r, r1) +∑
r∈R2

d(r, r2) ≤
∑

r∈R1
2d(r, h1) +

∑
r∈R2

2d(r, h2) = 2opt. ut

The running time is O(n2m) since we loop over pairs of rows (n2 pairs of
rows in total on instances with n rows) and for each pair we compute the error
correction which takes O(m) time. The algorithm of [3] runs in time O(m2n).
Thus, the new algorithm is quicker for inputs where n is much smaller than m.
Moreover, if the optimum solution to BinaryMEC is k, then (after collapsing
identical rows) the number of rows in the input will also be at most k + 2 – yet
the number of columns could still be large. Hence our algorithm might have a
role in parameterized approaches to solve or approximate BinaryMEC [6, 3].

To see that this is tight, let F =

(
I

1− I

)
, where I is the identity matrix. We

further replace each 0 in F by −1. The two optimum haplotypes will be {−1}m

1 A binary matrix M is conflict-free if the rows of M can be bipartitioned into two
sets such that the corresponding entries on each set are identical.

11

and {1}m. It is easy to see that each row will contribute 1 to the error correction,
for a total error correction of n on instances of n rows. The approximation
algorithm, on the other hand, will pick one row of I and one of 1−I as haplotypes.
The two chosen rows will not contribute to the error correction. For the n − 2
remaining rows, the contribution will be 2 for a total error of 2(n− 2).

Acknowledgements. The last author acknowledges the support of an NWO
TOP 2 grant.

References

1. Paola Alimonti and Viggo Kann. Hardness of approximating problems on cu-
bic graphs. In Italian Conference on Algorithms and Complexity, pages 288–298.
Springer, 1997.

2. Vikas Bansal and Vineet Bafna. Hapcut: an efficient and accurate algorithm for
the haplotype assembly problem. Bioinformatics, 24(16):i153–i159, 2008.

3. Paola Bonizzoni, Riccardo Dondi, Gunnar W Klau, Yuri Pirola, Nadia Pisanti,
and Simone Zaccaria. On the minimum error correction problem for haplotype
assembly in diploid and polyploid genomes. Journal of Computational Biology,
23(9):718–736, 2016.

4. Rudi Cilibrasi, Leo Van Iersel, Steven Kelk, and John Tromp. The complexity of
the single individual snp haplotyping problem. Algorithmica, 49(1):13–36, 2007.

5. International HapMap Consortium et al. A haplotype map of the human genome.
Nature, 437(7063):1299, 2005.

6. Rodney G Downey and Michael R Fellows. Fundamentals of parameterized com-
plexity, volume 201. Springer, 2016.

7. Maryam Etemadi, Mehri Bagherian, Zhi-Zhong Chen, and Lusheng Wang. Better
ILP models for haplotype assembly. BMC Bioinformatics, 19(1):52, Feb 2018.

8. Uriel Feige. Np-hardness of hypercube 2-segmentation. arXiv preprint
arXiv:1411.0821, 2014.

9. Yishan Jiao, Jingyi Xu, and Ming Li. On the k-closest substring and k-consensus
pattern problems. In CPM 2004, pages 130–144. Springer, 2004.

10. Giuseppe Lancia, Vineet Bafna, Sorin Istrail, Ross Lippert, and Russell Schwartz.
SNPs problems, complexity, and algorithms. In 9th European Symposium on Al-
gorithms (ESA 2001), LNCS 2161, pages 182–193. Springer, 2001.

11. Ross Lippert, Russell Schwartz, Giuseppe Lancia, and Sorin Istrail. Algorithmic
strategies for the single nucleotide polymorphism haplotype assembly problem.
Briefings in Bioinformatics, 3(1):23–31, 2002.

12. Rafail Ostrovsky and Yuval Rabani. Polynomial-time approximation schemes for
geometric min-sum median clustering. Journal of the ACM, 49(2):139–156, 2002.

13. Christos H Papadimitriou and Mihalis Yannakakis. Optimization, approximation,
and complexity classes. Journal of Computer and System Sciences, 43(3):425–440,
1991.

14. Kevin T Phelps, Josep Rifa, and Mercè Villanueva. Rank and kernel of binary
hadamard codes. IEEE Transactions on Information Theory, 51(11):3931–3937,
2005.

12

